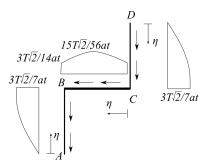

Università di Pisa

Esame di SCIENZA DELLE COSTRUZIONI II

Corso di Laurea in Ingegneria Civile, Ambientale e Edile (Docente: Prof. Stefano Bennati)

Prova scritta del 17 febbraio 2018 - Sintesi della soluzione


Problema 1.

- Condizioni al bordo: AOBD) $\sigma_y = -\overline{p}$, $\tau_{xy} = \tau_{yz} = 0$; AOCE) $\sigma_z = -\overline{p}$, $\tau_{zx} = \tau_{yz} = 0$; ABC) $\sigma_x = -\overline{p}$, $\tau_{zx} = \tau_{xy} = 0$; OED) $\sigma_x = -\overline{p}$, $\tau_{zx} = \tau_{xy} = 0$; BDCE) $\tau_{xy}\sqrt{3} + \tau_{zx} = 0$, $\sigma_y\sqrt{3} + \tau_{yz} = -\overline{p}\sqrt{3}$, $\tau_{yz}\sqrt{3} + \sigma_z = -\overline{p}$.
- Il campo di sforzo è staticamente ammissibile per $\bar{\sigma} = -\bar{p}$ e $\bar{\tau} = 0$.
- La variazione complessiva di volume è pari a $-3(1-2\nu)\overline{p}l^3\sqrt{3}$ / E; la variazione di superficie della faccia OED è pari a $-(1-2\nu)\overline{p}l^2\sqrt{3}$ / E.
- Il campo di sforzo determinato è quello effettivo anche nel caso in cui il materiale sia elastico lineare omogeneo ma non isotropo.

Problema 2. La sezione trasversale *ABCD* di spessore sottile mostrata nella figura a destra è soggetta a uno sforzo di taglio $T_{y'}$ la cui retta d'azione coincide con la direzione principale d'inerzia y' mostrata in figura e nota a meno dell'angolo α formato fra l'asse y e l'asse y'.

- $\alpha = \pi / 4$; $J_{x'} = \frac{7ta^3}{6}$.
- Andamento delle tensioni tangenziali:

$$DC) \ \tau_{z\eta} = \frac{3T_{y'}(3a - \eta)\eta\sqrt{2}}{14ta^3}; CB) \ \tau_{z\eta} = \frac{3T_{y'}(a^2 + a\eta - \eta^2)\sqrt{2}}{14ta^3}; AB) \ \tau_{z\eta} = -\frac{3T_{y'}(3a - \eta)\eta\sqrt{2}}{14ta^3}.$$

Avvertenze: scrivere su ogni foglio protocollo il proprio nome, cognome e numero di matricola e $\underline{corso\ di}$ \underline{laurea} ; alla fine della prova, consegnare tutti i fogli utilizzati.

Studente _____ (matricola: _____)