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Abstract 

In this paper, the undamped free vibration analysis of arbitrary shaped laminated composite 

plates with general stacking sequences is conducted based on the first-order shear defor-

mation theory. The finite element method is used to obtain the plate's vibrational characteris-

tics by introducing a six-nodded triangular element, i.e., natural frequencies and the corre-

sponding mode shapes. The element considered is a higher-order triangular element. Each 

node includes five degrees of freedom. Gaussian numerical integration is used to calculate 

the mass and stiffness matrices. The whole solution method is implemented within the 

MATLAB. The convergence of the results has been investigated, and results have been com-

pared against some available data in the literature and also commercial software ANSYS in 

which three-dimensional analysis is used. Excellent agreements have been observed. The ef-

fects of several parameters – such as boundary conditions, geometry, and lay-ups – on the 

natural frequencies are studied in detail.  
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1. Introduction 

Composite structures have been widely used in diverse engineering fields due to their out-

standing characteristics such as light-weight, high-strength, and shock resistance. In most practical 

cases, plates do not have regular geometries – like squares, rectangles, triangles, etc. – and feature 

entirely arbitrary and complex shapes. 

A fundamental contribution to the vibration of plates with regular shapes dates back to re-

search done by Leissa [1]. Wang et al. [2] carried out the vibrational analysis of a rectangular plate. 

Shi et al. [3] applied the Galerkin method to the vibrational analysis of a rectangular plate with fully 

clamped boundary conditions. Abedi et al. [4] investigated the vibration analysis of a rectangular 

composite plate with general stacking sequences and edge restraints using the Ritz method com-

bined with Lagrange multipliers. Vibration analysis of symmetric trapezoidal plates based on FSDT 

was conducted by Zamani et al. [5]. Nallim and Oller [6] proposed an analytical-numerical ap-

proach for the dynamic analysis of laminated composite plates with arbitrary quadrilateral geome-

try. Chen et al. [7] used the finite element method (FEM) for the free vibration analysis of arbitrary 

quadrilateral plates with elastic edge supports. Carrera [8-9] introduced a unified formulation for the 

finite element analysis of multi-layered plates, thus paving the way to analyze plates with general 

geometries.  

In this paper, the undamped free vibration of arbitrary shaped laminated composite plates is studied. 

First-order Shear Deformation Theory (FSDT) is used, and the Finite Element Method (FEM) is 

adopted to discretize and solve the posed problems numerically. In particular, the arbitrary in-plane 

plate geometries are approximated through six-noded triangular elements. Free vibration analysis is 

conducted based on a generalized eigenvalue problem. To the best of the authors knowledge, it is 

the first time that undamped free vibration of arbitrary shaped laminated composite plates with the 

aid of FEM and FSDT by introducing higher order triangular elements is considered.  The whole 

solution method is implemented within the MATLAB software code.  

The paper is arranged as follows: a brief description of the problem is explained in Section 2. Sec-

tion 3 presents a mathematical formulation for laminate composite plates considering FSDT. Sever-

al numerical examples are provided in Section6. Finally, we close our paper with some concluding 

remarks. 

2. Problem Description 

Let us consider a multi-layered composite plate with arbitrary lay-up and arbitrary in-plane 

shape represented by region A (Figure 1). The plate is made up of n orthotropic layers with total 

thickness ℎ. We fix a Cartesian right-handed coordinate system Oxyz with the origin O, 𝑥- and 𝑦-

axes on the plate mid-plane. 

 
Figure 1. Laminated composite plate with arbitrary lay-up and in-plane shape 
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3. Mathematical Formulation 

3.1 Stress Resultants 

According to the FSDT assumptions, the three-dimensional displacement field in the plate can 

be represented in terms of components along the 𝑥-, 𝑦-, and 𝑧-directions, respectively, as follows: 
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧 𝜓𝑥(𝑥, 𝑦, 𝑡) 
𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧 𝜓𝑦(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 
(1) 

In Eq. (1), 𝑢0, 𝑣0, and 𝑤0 are the mid-plane displacements, 𝑡 denotes time, 𝜓𝑥 and 𝜓𝑦 are the 

angles of rotation of the normal to the mid-plane about the 𝑦- and 𝑥-axes, respectively. 

Using the strain-displacement relations of linear elasticity, the strain components in compact 

matrix form are: 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = {

𝑢0,𝑥
𝑣0,𝑥

𝑢0,𝑦 + 𝑣0,𝑥
} + 𝑧 {

𝜓𝑥,𝑥
𝜓𝑦,𝑦

𝜓𝑥,𝑦 + 𝜓𝑦,𝑥

} = {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

} (2) 

Besides, the transverse shear strains 𝛾𝑥𝑧 and 𝛾𝑦𝑧 can be written as: 

𝛾𝑥𝑧 = 𝑢,𝑧 +𝑤,𝑥 = 𝜓𝑥 +𝑤0,𝑥 

𝛾𝑦𝑧 = 𝑣,𝑧 +𝑤,𝑦 = 𝜓𝑦 +𝑤0,𝑦 
(3) 

The stress-strain relations for the 𝑘th layer in matrix form are [10]: 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}

(𝑘)

= [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄 ̅16 𝑄̅26 𝑄̅66

]

(𝑘)

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

}

(𝑘)

 

{
𝜏𝑦𝑧
𝜏𝑥𝑧
}
(𝑘)

= [
𝑄̅44 𝑄̅45
𝑄̅45 𝑄̅55

]

(𝑘)

{
𝛾𝑦𝑧
𝛾𝑥𝑧
}
(𝑘)

 

(4) 

where 𝑄̅𝑖𝑗 are the transformed reduced stiffness constants [10]. The stress resultants turn out 

to be: 

{
  
 

  
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦}
  
 

  
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16
𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26
𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66]

 
 
 
 
 

{
  
 

  
 
𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦}

  
 

  
 

 

{
𝑄𝑦𝑧
𝑄𝑥𝑧

} = [
𝐴44 𝐴45
𝐴45 𝐴55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
} 

(5) 

where 𝐴𝑖𝑗 , 𝐵𝑖𝑗and 𝐷𝑖𝑗 are the extension stiffness, extension-bending coupling stiffness, and 

bending stiffness, respectively; these can be calculated as: 

[𝐴𝑖𝑗, 𝐵𝑖𝑗 , 𝐷𝑖𝑗] = ∑(𝑄̅𝑖𝑗)𝑘∫ [1, 𝑧, 𝑧2]𝑑𝑧
𝑧𝑘

𝑧𝑘−1

                       𝑖, 𝑗 = 1,2,6

𝑁

𝑘=1

 

𝐴𝑖𝑗 = 𝑘𝑖𝑗∑(𝑄̅𝑖𝑗)𝑘∫ [1, 𝑧, 𝑧2]𝑑𝑧
𝑧𝑘

𝑧𝑘−1

                       𝑖, 𝑗 = 4,5

𝑁

𝑘=1

 

(6) 

In Equation (6), 𝑘𝑖𝑗 are the shear correction factors, here for simplicity considered to be 5 6⁄ , 

like for homogenous beams of rectangular cross-section. 

3.2 Potential and Kinetic Energies of the Plate 

The strain potential energy of the plate based on FSDT is: 
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𝑈𝑝 =
1

2
∬ (𝑁𝑥𝜀𝑥

0 +𝑁𝑦𝜀𝑦
0 +𝑁𝑥𝑦𝛾𝑥𝑦

0 +𝑀𝑥𝑘𝑥 +𝑀𝑦𝑘𝑦 +𝑀𝑥𝑦𝑘𝑥𝑦 + 𝑄𝑦𝑧𝛾𝑦𝑧 + 𝑄𝑥𝑧𝛾𝑥𝑧)𝑑𝑥𝑑𝑦
𝐴

 (7) 

Likewise, the kinetic energy of the multi-layered plate is [10]: 

𝑇 =
1

2
∬ [𝐼0(𝑢,𝑡

2 + 𝑣,𝑡
2 +𝑤,𝑡

2) + 2𝐼1(𝑢,𝑡𝜓𝑥,𝑡 + 𝑣,𝑡𝜓𝑦,𝑡) + 𝐼2(𝜓𝑥,𝑡
2 +

𝐴

𝜓𝑦,𝑡
2 )]𝑑𝑥𝑑𝑦 (8) 

Where 

(𝐼0, 𝐼1, 𝐼2) = ∫ 𝜌(𝑧)(1, 𝑧, 𝑧2)𝑑𝑧

ℎ

2

−
ℎ

2

 (9) 

are the inertia moments of the plate, and 𝜌 is the material density (possibly, varying from lay-

er to layer). 

4. Finite Element Method 

In this study, triangular elements are used to discretize the plate and approximate its arbitrary 

in-plane geometry. The element considered is a higher-order triangular element with six nodes. 

Each node includes five degrees of freedom (𝑢0, 𝑣0, 𝑤0, 𝜓𝑥, 𝜓𝑦), and thus each element totally has 

30 degrees of freedom. 

Lagrange interpolation functions are used to describe the generalized displacement fields in-

side the element [11]: 

𝐮(𝑥, 𝑦) =∑𝑁𝑖

6

𝑖=1

𝐮𝐢 (10) 

where 𝑁1, 𝑁2, 𝑁3, 𝑁4, 𝑁5𝑁6 are shape functions, that will be calculated in the next section. 

Equation (10) can be rewritten as follows: 
𝑢0(𝑥, 𝑦) = [𝑁𝑢]{𝑑} 
𝑣0(𝑥, 𝑦) = [𝑁𝑣]{𝑑} 
𝑤0(𝑥, 𝑦) = [𝑁𝑤]{𝑑} 
𝜓𝑥(𝑥, 𝑦) = [𝑁𝜓𝑥]{𝑑} 

𝜓𝑦(𝑥, 𝑦) = [𝑁𝜓𝑦] {𝑑} 

(11) 

Where 

{𝑑} = {𝑢1, 𝑣1, 𝑤1, 𝜓𝑥1 , 𝜓𝑦1⋯ ,𝑢6, 𝑣6, 𝑤6, 𝜓𝑥6 , 𝜓𝑦6}
𝑇

 (12) 

is the 30 × 1vector of element displacements, and T denotes transpose. 

Besides, [𝑁𝑢], [𝑁𝑣], [𝑁𝑤], [𝑁𝜓𝑥] and [𝑁𝜓𝑦] are matrices of shape functions of order 1 × 30, 

and for the triangular element can be considered as [11]. 

By substituting the generalized displacements (11) into equations(7-10), stiffness and mass 

matrices and force vector can be calculated. By assembling the matrices and vectors for all of the 

elements in global coordinates, the mass and stiffness matrices of the whole plate together with the 

total force vector are calculated. Finally, the equations of motion of the discrete plate model in ma-

trix form are written as: 
[𝑀]{△̈} + [𝐾]{△} = {𝐹(𝑡)} (13) 

where {△} is the vector of degrees of freedom of the whole plate, [𝑀] and [𝐾] are the global 

mass and stiffness matrices, respectively, and {𝐹(𝑡)} is the total force vector. It is noteworthy that 

the well-known penalty approach is used to apply the boundary conditions [11]. 
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4.1 Shape Functions 

 
Figure 2. Area coordinates for obtaining the shape functions [11]  

 

The shape functions for the triangular element can be expressed as [11]: 
𝑁𝑖 = (2𝐿𝑖 − 1)𝐿𝑖              (𝑖 = 1, 2, 3) 

𝑁4 = 4𝐿1𝐿2, 𝑁5 = 4𝐿2𝐿3, 𝑁6 = 4𝐿3𝐿1 
(14) 

Where 𝐿1, 𝐿2 and 𝐿3are the area coordinates (Figure 2) [10]. 

5. solution 

By ignoring the right-hand side of equation (13) and assuming a general solution of the form 

{△} = {△0}𝑒
𝑖̂𝜔𝑡, where 𝑖̂ is the imaginary unit and 𝜔 is the natural angular frequency, equation 

(13) yields the following generalized eigenvalue problem: 
([𝐾] − ω2[𝑀]){△0} = 0 (15) 

where 𝜔2 is the eigenvalue, and {△0} is the eigenvector, describing the corresponding mode 

shape. It is noteworthy that the well-known penalty approach is used to apply the boundary condi-

tions [12], and the whole solution method is implemented within the MATLAB software code. 

6. Results 

Numerical results are presented in this section. For each case, the convergence of the response 

is investigated, and then they are presented. Unless mentioned otherwise, the physical properties of 

each layer are taken to be: 
𝐸2 = 9.65 GPa ,      𝐸1 = 40𝐸2 ,      𝑣12 = 0.25 

𝐺12 = 𝐺13 = 0.6𝐸2 ,    𝐺23 =  0.5𝐸2,      𝜌 = 1389.23 kg/m
3 

(16) 

All layers are of equal thickness and have the same physical properties. 

6.1 Validating the results 

Consider the equilateral triangular plate; the dimensionless fundamental frequencies of the 

plate are presented in Table 1 for different lay-ups and calculation methods. 
Table 1. Dimensionless frequencies (Ω̅) of the equilateral triangular composite plate with fully 

clamped boundary conditions 
Lay-ups h/a [5] ANSYS [5] Present 

[0°/90°/90°/0°] 

0.05 68.17 70.61 68.180 

0.1 43.32 44.44 43.421 

0.15 31.17 31.78 31.248 

[30°/60°/60°/30°] 

0.05 59.18 59.28 59.210 

0.1 38.39 39.07 38.404 

0.15 29.18 29.02 28.355 

[45°/60°/60°/45°] 

0.05 57.13 56.21 57.18 

0.1 37.12 37.60 37.233 

0.15 27.49 28.15 27.573 

[30°/90°/90°/30°] 

0.05 64.54 65.16 64.736 

0.1 41.61 42.07 41.719 

0.15 30.20 30.62 30.368 
 

The following material properties are used in this example: 
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𝐸1 = 40𝐸2,   𝐺 = 0.6𝐸2 ,   𝜈 = 0.25,     𝜌 = 2500 kg/m
3 (17) 

The dimensionless frequencies are computed as Ω̅ =
𝜔𝑎2√𝜌/𝐸2

ℎ
. As can be seen, very good 

agreement is obtained between compared methods. 

6.2 Gear-shaped Plate 

Figure 3 shows a plate with the shape of a gear. The first three dimensionless frequencies of 

this plate with fully clamped edges for different values of h/a and a = 2b are presented in Table 2 

where 𝑎 is the length, 𝑏 is the width, and ℎ denotes the thickness of the plate. The maximum and 

minimum length sizes of the elements are assumed to be 0.05 mm and 0.025 mm, respectively. Al-

so, the mentioned plate is simulated in Ansys software, and the results of the method used in the 

present work have been compared with the results of the same model in Ansys software. As can be 

seen, by increasing the ratio h/a, the dimensionless frequencies decrease. The corresponding mode 

shapes for h/a= 0.1 are shown in Figure 4. 

 
Figure 3.Gear-shaped plate 

 

Table 2. Dimensional frequencies (Ω) of a gear-shaped plate with lay-up [0°/45°] 
and clamped edges 

ℎ/𝑎 

Present ANSYS 

Mode No. Mode No. 

1 2 3 1 2 3 

0.1 18.2875 26.0498 31.9411 16.8836 24.6814 32.9586 

0.15 14.8059 20.9229 24.3503 13.2820 18.7667 24.1895 

0.2 12.4036 17.4086 19.5757 10.7415 14.9512 18.9002 
 

 

 

  

1st mode 2nd mode 3rd mode 

  

Figure 4. First three mode shapes of the gear-shaped plate with lay-up [0°/45°] and clamped edges 

(h/a=0.1) 

6.3 Car Door-shaped Plate 

In order to consider an arbitrary shape plate, a composite laminated plate is considered with 

the shape of a car door and the dimensions shown in Figure 5. 
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Figure 5. Laminated composite plate in the shape of a car door 

The first five dimensionless frequencies (Ω) of the plate for different boundary conditions are 

presented in Table 3. The letters denoting the boundary conditions orderly refer to the sides at 𝑥 =
 0, 𝑦 =  0, 𝑥 =  𝑎 and the outer curve. In this table, each letter stands for different boundary condi-

tions, "C" stands for Clamped, "S" means Simply Support condition, and finally, "F" is the abbrevi-

ation of Free boundary condition. The maximum length size of the elements is assumed to be 0.05 

mm, and the minimum length size of the elements is considered 0.025 mm. Generally, for specified 

thickness and boundary conditions, the plate with lay-up [0°/90°/90°/0°] has the maximum frequen-

cy, while the one with lay-up [45°/60°/60°/45°] has the minimum frequency. The first five corre-

sponding mode shapes for one of the considered cases are displayed in Figure 6. 

 
Table 3. First five dimensionless frequencies (Ω) of the plate in the form of a car door with various 

lay-ups, boundary conditions, and thicknesses 
Mode Number 

ℎ/𝑎 Lay-up BCs 
5 4 3 2 1 

107.8909 93.0312 70.4839 66.6748 31.8522 0.05 
[0°/90°/90°/0°] 

CCCC 

62.2869 60.6853 49.6290 40.6470 22.1188 0.1 

93.3291 70.6341 69.5385 45.9986 24.0237 0.05 
[30°/60°/60°/30°] 

61.3373 48.3800 47.5445 32.5856 18.5448 0.1 

84.7493 77.3155 59.2007 38.2056 22.5922 0.05 
[45°/60°/60°/45°] 

51.0488 50.3017 42.9690 28.8338 17.9163 0.1 

54.6942 53.8591 50.3027 43.3368 16.6767 0.05 
[0°/90°/90°/0°] 

SSSS 

41.7125 37.0760 30.0697 14.4720 13.9130 0.1 

56.4930 46.0884 42.9285 31.3524 12.1139 0.05 
[30°/60°/60°/30°] 

35.0092 31.3974 25.1461 19.7465 10.1377 0.1 

519298 41.7117 39.3900 25.2259 10.3445 0.05 
[45°/60°/60°/45°] 

33.6242 30.1982 20.8200 18.8348 8.6396 0.1 

31.7833 26.5206 26.0409 14.7646 8.9665 0.05 
[0°/90°/90°/0°] 

CCFF 

20.0438 15.8917 13.2603 12.7251 7.8548 0.1 

19.4969 18.3592 17.0998 13.6512 6.0774 0.05 
[30°/60°/60°/30°] 

15.7514 11.9972 9.7485 8.5499 5.5149 0.1 

18.9504 17.8348 15.3657 13.6907 5.4004 0.05 
[45°/60°/60°/45°] 

15.7687 12.0519 8.9174 7.6829 4.8984 0.1 

 

 

  
 

mode rd3 mode nd2 mode st1 
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mode th5 mode th4 

Figure 6. First five mode shapes of a composite car door-shaped plate with lay-up [45°/60°/60°/
45°] and CCFF boundary conditions (h/a=0.1) 

7. Conclusion 

In this paper, free vibration analysis of the composite plate with arbitrary geometry was per-

formed using a high-order triangular element based on first-order shear deformation theory. Two 

fully arbitrary plates have been considered and analyzed. Some of the considered plates have been 

compared with the ANSYS model, and it has been seen that the results are close. 
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