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SUMMARY. The mixed bending-tension (MBT) test has been introduced by Macedo et al. to 

assess the interlaminar fracture toughness of laminates with low bending stiffness and strength in 

the longitudinal direction. In the experimental setup, the delaminated specimen is adhesively 

bonded to two pin-loaded metal beams. We have developed a mechanical model of the test, where 

the specimen is modelled as an assemblage of two beams connected by an elastic interface, while 

the metal beams are modelled as rigid beams. An analytical solution has been obtained by 

applying classical beam theory. Furthermore, to better describe the experimental results, we have 

developed also a cohesive zone model based on a bilinear traction-separation law. 

1 INTRODUCTION 

Delamination is a major failure mode for fibre-reinforced composite laminates. Within the 

context of linear elastic fracture mechanics (LEFM), the propagation of delaminations is 

commonly predicted based on the energy release rate, G. Several experimental procedures and 

testing setups have been developed to assess delamination toughness under pure and mixed 

fracture modes [1]. However, while standard testing procedures exist for unidirectional (UD) 

laminated specimens with 0°-oriented fibres, the development of new testing procedures for 

multidirectional laminates is still an open issue [2, 3]. 

The double cantilever beam (DCB) test is the simplest and most commonly used testing 

method to determine the delamination toughness of laminated specimens under mode I. For UD 

laminates the DCB test has been standardised by ISO [4] and other standards development 

organisations. Nevertheless, its use turns out to be problematic – or impossible at all – when 

applied to materials with very low bending stiffness and strength, as the failure of the arms in 

bending may anticipate delamination growth [5]. To overcome this drawback – in particular, for 

specimens with 90°-oriented fibres – Macedo et al. [6] have proposed a mixed bending-tension

(MBT) test, where the specimen is adhesively bonded to two pin-loaded metal beams (Fig. 1). 

Following the same approach used for the asymmetric double cantilever beam (ADCB) [7] and 

mixed mode bending (MMB) tests [8], we have developed a mechanical model of the MBT test, 

where the specimen is modelled as an assemblage of two beams connected by an elastic interface. 

The metal beams that transfer the load to the specimen are instead modelled as rigid beams. An 

analytical solution has been obtained by applying classical beam theory. The elastic interface 

model is able to predict the initial linearly elastic response, but not delamination growth. To this 

aim, we have developed also a cohesive zone model based on a bilinear traction-separation law, 

which turns out to be effective in reproducing some experimental results of the literature. 



2 LINEAR ELASTIC INTERFACE MODEL 

2.1 Mechanical model 

In the MBT test, a laminated specimen with a pre-implanted delamination of length a0 is 

adhesively bonded to two equal metal beams, each of thickness t. The beams transfer the load, P, 

applied by the testing machine, to the specimen (Fig. 1). We denote with l, b, and 2h the 

specimen’s length, width, and thickness, respectively. The loading pins are placed at a distance d

from the left-hand end section of the specimen. A global reference system, Oxyz, is defined with 

its origin at the centre of the specimen’s left-hand end section, and the x- and z-axes aligned with 

the specimen’s longitudinal and transverse directions, respectively. 

Figure 1: The MBT test specimen. 

The delamination divides the specimen into two sublaminates of same thickness and 

mechanical properties. In our mechanical model, we assume that the sublaminates are connected 

by an interface of negligible thickness, regarded as a continuous distribution of linearly elastic 

springs. Given the symmetry of the system with respect to the specimen’s mid-plane, no shear 

stresses are transmitted through the interface. Hence, we consider that the distributed springs act 

along the normal direction to the interface plane only. Accordingly, the normal interfacial stress is 

( ) ( ) [ ]0, ,= ∆ ∈zx k w x x a lσ , (1)

where kz is the springs’ elastic constant and ∆w is the corresponding transverse relative 

displacement. 

Thanks to the symmetry, analysis can be limited to the upper half of the system (Fig. 2). Hence, 

( ) ( )12∆ =w x w x , (2)

where w1 is the upper sublaminate’s mid-plane displacement in the transverse direction. 



We assume that the displacement of the specimen is led by that of the rigid beam, so that it can 

be expressed as follows: 
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where θ and δ respectively represent the rigid rotation and translation of the beam. In particular, 

2δ  is the displacement of the load application point (at x = −d). 

Figure 2: Schematics of the upper half of the system. 

Static equilibrium of the system requires that 
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By substituting Eq. (3) into (1) and (2), and the result into (4) and (5), a linear equation set is 

obtained, whose solution yields θ and δ. As a final result, we obtain the expressions of the 

transverse displacement, 
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and normal interfacial stress, 
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2.2 Specimen’s compliance and energy release rate 

Within the linearly elastic load-deflection response, the specimen’s compliance is defined as 

δ=C P , where P is the applied load and � is the displacement of the load application point [1]. 

For the MBT test, δ = 2w1(−d) and the specimen’s compliance results 
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Within LEFM, the energy release rate is defined as d d= −G V A , where V is the total potential 

energy of the system and d d=A b a  is the area of the new surface created by crack advancement 

[1]. In this case, the well-known Irwin-Kies [9] relationship yields 
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By substituting Eq. (8) into (9), the following expression is obtained 
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where the subscript I highlights the fact that the fracture propagates in pure mode I during the test. 

3 COHESIVE ZONE MODEL 

The linear elastic interface model presented in the previous section can be used successfully to 

predict the experimental response in the initial linear elastic stage prior to the onset and 

propagation of the delamination crack. The latter phenomena involve material damage and fracture, 

which both can be taken into account by the assumption of a cohesive zone model [10]. 

Here, we assume that the dependence of the interfacial normal stress, σ, on the relative 

displacement, ∆w, can be described by a bilinear cohesive law (Fig. 3). 

Figure 3: The bilinear cohesive law. 

An unlimited linear elastic response is assumed in compression, while in tension the normal 

stress cannot exceed the value σ0, corresponding to the relative displacement ∆w0. For relative 



displacements included between ∆w0 and ∆wu, a softening behaviour is assumed, corresponding to 

progressive material damage. For a relative displacement greater than ∆wu, fracture occurs. 

According to the above, Eq. (1) is modified as follows: 
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Eqs. (2) through (5) still hold and can be used to determine the response of the specimen 

beyond the linearly elastic behaviour. For the sake of brevity, we omit here the details of the 

calculations that involve substitution of Eq. (11) into the static equilibrium Eqs. (4) and (5) to 

determine the values of δ and θ during the various stages of response. Actually, three stages can be 

individualised in the specimen’s response: 

- Stage I – Linearly elastic behaviour. As long as the opening displacement at the crack tip, 

∆w(a), is less than ∆w0, the specimen’s response is linearly elastic. Neither material damage, 

nor crack propagation occur during this stage; 

- Stage II – Progressive material damage. When the opening displacement at the crack tip 

attains the value ∆w0, damage of the material begins. As the test proceeds further, a damaged 

zone of increasing length, c, develops ahead of the crack tip, while the delamination length is 

constantly equal to a0 (Fig. 4). Correspondingly, the length of the zone where the material is 

still linearly elastic decreases; 

- Stage III – Crack propagation. When the opening displacement at the crack tip equals ∆wu, 

fracture occurs. Then, the delamination length, a, increases and the damaged zone changes its 

length accordingly, until complete delamination of the specimen is reached. 

Figure 4: Stage II: the development of the damaged zone at the crack tip. 



4 COMPARISON WITH EXPERIMENTAL RESULTS 

By way of illustration, we consider an experimental study by Macedo et al. [6], who report on 

the results of MBT tests on carbon/epoxy unidirectional [0] 26 and [90]26 laminated specimens. The 

considered specimen had span l = 40 mm, width b = 20 mm, and thickness 2h = 4 mm; the initial 

delamination length was a0 = 25 mm, obtained by inserting a 13 µm PTFE film at laminate half-

thickness during lamination. The metal beams were made of S235 structural steel and had 

thickness t = 19 mm. The loading pins were placed at a distance d = 100 mm from the left-hand 

end section of the specimen. The tests were conducted under imposed displacement conditions. 

The main objective of the study was to obtain fracture initiation values, GIc, so that the albeit small 

crack propagation length did not represent a problem. 

The parameters characterising our mechanical model can all be determined from the 

experimental results presented in [6]. In what follows we limit to the 0° unidirectional laminated 

specimens, but the same procedure can be applied for the 90° laminated specimens. Firstly, the 

value of the interface elastic constant, kz = σ0/∆w0 is obtained by applying a compliance calibration 

strategy [11]. By inverting Eq. (8), we obtain 
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By using in Eq. (12) the value of compliance, Cexp, measured during the experimental test (in 

particular, at the end of the apparent linear elastic response), we obtain kz = 1275.8 N/mm3. This 

value also corresponds to σ0 = 32.3 MPa and ∆w0 = 0.025 mm. The ultimate relative displacement 

was determined as ∆wu = 0.045 mm by matching the theoretical and experimental values of 

displacement that correspond to the maximum applied load. 

Figure 5: Load vs. applied displacement. 

Figure 5 shows the load-displacement curve as predicted by the proposed model, superimposed 

to the experimental curve furnished by Macedo et al. [6]. The three stages of behaviour described 

in Section 3 are clearly individualised. In stage I, the agreement between the theoretical 

predictions and experimental results is excellent. This success can be ascribed to the effectiveness 

of the beam on elastic foundation model, but relies also on the compliance calibration strategy 

adopted to define the value of the elastic interface constant. In stage II, our model underestimates 



somehow the maximum value of the load, although gathering the correct trend of the curve. Due to 

the shortness of the crack propagation length, the experimental tests did not reach stage III and we 

have no elements for comparison. 

Figure 6 shows the relative displacement at the crack tip, ∆w(a0), as a function of the relative 

displacement, δ, between the load application points. 

Figure 6: Crack-tip opening displacement vs. applied displacement. 

Figure 7 shows the length of the cohesive zone, c, as a function of the delamination length, a, 

through the three stages of response. During stage I, the delamination length is a0 and the cohesive 

zone has a null length. During stage II, the cohesive zone length increases, while the delamination 

length remains constant. Lastly, during stage III, the delamination length increases until the 

delamination involves the whole specimen, while the cohesive zone progressively reduces its 

length. 

Figure 7: Cohesive zone length vs. delamination length. 

Figure 8 shows the normal interfacial stress, σ, as a function of the abscissa, x, along the 

specimen for increasing values of applied displacement, δ. The green curve corresponds to stage I, 

the two orange curves to stage II, and the two red curves to stage III. 



Figure 8: Normal interfacial stress vs. abscissa. 

5 CONCLUSIONS 

We have presented a mechanical model of the mixed bending-tension (MBT) test, where the 

specimen is modelled as an assemblage of two beams connected by an elastic interface. The metal 

beams that transfer the load to the specimen are instead modelled as rigid beams. An analytical 

solution has been obtained by applying classical beam theory. 

To overcome the limits of the elastic interface model, we have developed also a cohesive zone 

model, which turns out to be effective in reproducing some experimental results of the literature, 

although it admits room for further improvements. For instance, a better agreement with 

experimental results could be obtained by adopting a bilinear cohesive law with a discontinuity in 

the value of the stress transmitted by the damaged interface [12]. Anyway, the proposed model can 

be used as a simple tool for the understanding of test results, skipping the need to resort to more or 

less complex numerical analyses. 
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