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SUMMARY. The virtual crack closure technique (VCCi§ a well-established method for

computing the energy release rate (ERR) when anglygacture problems via the finite element

method. For mixed-mode fracture problems, the VG€HhIso commonly used to partition the

fracture modes, i.e. to determine the ERR contidingtrelated to fracture modes |, II, and Ill. A

perhaps little known fact, however, is that in soareumstances the standard VCCT predicts
physically inconsistent, negative values for thedalacontributions to the ERR. Focusing on /Il

mixed-mode problems, this paper presents a reM&XdT which furnishes a physically consistent

partitioning of fracture modes by associating theden| and Il ERR contributions to the works

done in a suitably defined two-step process ofurlo®f the virtually extended crack.

1 INTRODUCTION

The virtual crack closure technique (VCCT) is alvestablished method for calculating the
energy release rate (ERR) when analysing fractrobl@ms via the finite element method (FEM).
The technique is based on the numerical implemientaif Irwin’'s crack closure integral [1], as
first proposed for two-dimensional problems by R¥biand Kanninen [2], and later extended to
three-dimensional problems by Shivakuregal. [3]. In recent years, the VCCT has gained great
popularity for the study of mixed-mode fracture lpgeoms, such as the delamination of composite
materials and interfacial fracture between dissimihaterials. In these cases, the VCCT is used to
compute not only the total ERR, but also the cbations of the three fracture modes (I or
opening, Il or sliding, and Il or tearing) [4].

A perhaps little known fact, however, is that im®ocircumstances (for instance, bodies with
asymmetric cracks subjected to certain load camli)i, the standard VCCT predicts physically
inconsistent, negative values for the modal coutiiims to the ERR. Although this potential
shortcoming of the technique has already been owatdi in the literature [5], it does not seem to
have received the attention it deserves.

Focusing on I/ll mixed-mode fracture problems, vevalop a revised VCCT that associates
the mode | and Il ERR contributions to the worksi@an a suitably defined two-step process of
closure of the virtually extended crack. Furtherepowe suggest an implementation procedure
based on computation of flexibility coefficients.

The effectiveness of the proposed method is thetedeby considering the problem of a
delaminated cantilever beam subjected to bendingles. The overall thickness of the beam is
kept constant, while several positions of the délation are considered to highlight the effects of
crack asymmetry. The mode | and Il contributionstie ERR are computed using both the
standard and revised VCCT. For the sake of comparithe same quantities are also computed
using the analytical solution by Suo and HutchingnThus, the revised VCCT demonstrates its
ability to furnish physically consistent predict®also in cases where the standard technique fails.



At a deeper investigation, the physically incoresistpredictions of the standard VCCT could
be shown to be due to the lack of energetic orthality between the crack-tip force components
used to compute the mode | and Il ERR contributibtmvever, a more detailed discussion on this
topic — as well as on the phenomena of contaatypenetration, and friction between the crack
surfaces — is postponed to the full version offttesent paper [7].

2 STANDARD VCCT

2.1Computation of ERR

Let us consider the two-dimensional (plane stregdame strain) problem of a linearly elastic,
continuous body of widttB, affected by a straight crack of lengthwith prescribed loads and
kinematic boundary conditions (Fig. 1a). A globalrtésian reference systefxz, is fixed with
the x- andz-axes respectively parallel and orthogonal to ttaelc direction. A FEM model of the
problem is defined using a mesh made of 4-nodeeaitsr(Fig. 1b). Lef, By, Cy, ..., andA,, By,

C,, ..., denote the nodes placed on the crack’s lowdrugpper surfaces, respectively. The facing
upper and lower nodes are initially bonded togelhesuitable internal constraints, which can be
progressively released in order to simulate crackvth. The initial position of the crack tip is
taken to be at nodg, (coincident withCy,).
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Figure 1: Problem formulatior cracked continuous bodlg;FEM mesh.
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According to Irwin [1], the energy dissipated byvatual (i.e. small and kinematically
compatible) extension of the crack is equal towloek that would be done to close the crack by
the forces that were acting on the new crack sesfgwior to crack extension. Within the FEM
framework adopted, thanergy release rate can then be computed as
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where X. and Z. are the internal forces (Fig. 2a) acting at thecki#tip node along the- andz-
directions, respectively, anfiu. and Aw, are the corresponding relative displacements (.

that occur when the crack is virtually extendedabdgngthAa (equal to the size in thedirection
of the elements in the neighbourhood of the crgmk t
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Figure 2: Standard VCC& crack-tip forcesb crack-tip relative displacements.

2.2Fracture mode partitioning
When crack growth occurs under I/1l mixed-mode tinae conditions

G=G +G,, 2)

whereG, andG, are respectively thenode | and Il contributions to the energy release rate. In

line with standard VCCT, the modal contributiong &entified simply by the two addends in
parentheses in Eq. (1):
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Now, because of their physical meaning, not oBlybut alsoG, and G, , must be non-
negative quantities [1]. Instead, as the exampieSdction 4 below will show, in the case of
bodies with asymmetric cracks, Egs. (3) may yieddative values for some loading conditions.
These physically inconsistent results appear wiiiereof the nodal forcesX. or Z., turns out
to be opposite in direction with respect to theresponding relative displacemeui,. or Aw .

To understand why this behaviour occurs, consiaatrthe relative displacements occurring at the
crack tip for a virtual crack extension are equalagnitude (and opposite in sign) to the relative
displacements produced by application of the ctarksrces. Thus, for linear models,



Au. = X.+f,Z. and Aw, =f, X.+f, Z., 4

where f, f,, f,,andf, are flexibility coefficients ( f, = f, by virtue of Betti-Maxwell’s

reciprocity theorem).
From Egs. (4) it can be seen that, fif, #0 (which is generally true for bodies with

asymmetric cracks), there is a coupling betweenctiaek-tip force in thez-direction and the
relative displacement in thedirection and,vice versa, between the crack-tip force in the
direction and the relative displacement in grdirection. As will be shown in the following, this
coupling has to be taken into account carefullgrider to obtain physically consistent partitioning
of the fracture modes.

By substituting Egs. (4) into (1), we obtain theFERs a quadratic form of the crack-tip forces,
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A physically consistent method for fracture modetipaning requires decomposirng into the
sum of two non-negative contributions related tcfure modes | and Il. Inspection of Eq. (5)
leads quite naturally to the assumption that ttem{negative) terms depending dp, and f,, are

related t0G, and G, , respectively. Instead, how to partition the tefamdefined in sign)
depending on the coupling flexibility coefficient,,, is not so obvious. By substituting Egs. (4)
into (3), we obtain

1
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hence, according to the standard VCCT, the ternemi#ipg onf,, is equally partitioned between
G, andG, . Since the abovementioned term is undefined in,sigis predictable that in some

circumstances negative values f8r and G, can be obtained using the standard VCCT.

3 REVISED VCCT

3.1Physically consistent partitioning of fracture modes

The revised VCCT proposed here takes the contdbstG, and G, as associated to the

works done in a suitably defined two-step closureess of the virtually extended crack. In step |,
corresponding to fracture mode | (opening), thelkcitip relative displacement in ttedirection,

Aw,, is closed completely by applying the necessaagletip force,Z? , in the same-direction.
At the same time, a null forcex? =0, is applied in the-direction, but, because of coupling, the
crack-tip relative displacement in thedirection, Au,., is partly closed (iff,, >0), or further
opened (iff, <0), by a quantityAu? (Fig. 3a). In step Il, corresponding to fractureda Il
(sliding), the residual crack-tip relative displawent in thex-direction, AuY =Au. —AuW? | is
closed by applying suitable crack-tip force&l” = X. and 2" =z, -z (Fig. 3b).
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Figure 3: Revised VCCTa step I, closure of the crack-tip relative displaeat in thez-direction
(mode 1);b step Il, closure of the crack-tip relative disglaent in the-direction (mode |II).

By using Eqs. (4), the crack-tip forces to be agapin step | are determined as

X9 =0 and Zg):¥:%xc+zc- (7)

z z

These forces produce the crack-tip relative dispiaents

f
MY = 1,20 == 0w and Aw = 1,20 =aw. ®

z

Note that by virtue of Egs. (7), in the presenceaipling (f, #0), Z¥ is generally different
from the actual crack-tip forceZ. .

The crack-tip forces to be applied in step Il dre total crack-tip force in thedirection and
the residual crack-tip force in tlzedirection,

X® =X, and Z" =z -270 = —% Xe - ©)

z

By using Eqs. (4), (7), (8), and (9), the ensuiragk-tip relative displacements are determined as

2
Aul =(f, —%)xc =Au. -ou? and AW = 0. (10)

z

Therefore, in step Il the residual crack-tip relatdisplacement in thg-direction is cancelled
exactly, while no further relative displacementhr z-direction is produced.



Accordingly, the mode | and Il contributions to thRR are

0] )] (0) (1))
| :ﬂ and G, :ﬂ_ (11)
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By substituting Egs. (7)—(10) into (11), we obtain
_f2 y2
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which are clearly non-negative quantities. Thuscamtrast to the standard VCCT, the revised
VCCT furnishes a physically consistent partitionimigthe fracture modes. Egs. (12) also reveal
the conditions for pure fracture modes: pure mo@€,|=0) is obtained forX. =0, pure mode

1 (G, =0) for Aw, =0.

3.2Implementation procedure

In standard FEM analysis, nodal displacements aeal las the principal unknowns, while
nodal forces are computed from element stressese@sndary results. Therefore, it would be
preferable to determin&, and G, based on the values of the crack-tip relative ldisments

alone. To this aim, we substitute Egs. (4) intosgeeond of Eqgs. (12) to obtain

_ 2
- 1 AW and G, = 1 1(f,Au. fszsz) '
2BAa f, 2BAa f, fof,—f2

(13)
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Figure 4: Computation of flexibility coefficienta:unit forces in the-direction;b unit forces in
thez-direction.



The flexibility coefficients entering into Eqgs. (l8an be readily evaluated by considering the
FEM mesh with the virtually extended crack and aartichg two preliminary analyses for when
unit forces are applied at nod€sandC, in thex- andz-directions, respectively (Fig. 4a and 4b).
The flexibility coefficients are equal to the capending relative displacements:

Xe=1

fo = (U, —ucl)|xczl, f, = (W, —w,) "

fo = (uc2 _ucl) f,= (Wc2 —W

ze=1' cl)|zC:1'

4 APPLICATIVE EXAMPLE

4.1Test problem

The effectiveness of proposed method is now tebiedonsidering the problem shown in
Figure 5, where a delaminated cantilever beambigested to two bending coupleb], and M,.

L |

Figure 5: Delaminated cantilever beam subjectdsbtaling couples.

The beam is of length =100 mm, width B =25 mm, and thicknes#H =10 mm. The crack
length isa =50 mm. The delamination splits the beam into two subfatés of thicknessed,
and H, . Several values of th&icknessratio, 7 =H,/H,, are considered in order to highlight the
effects of crack asymmetry. The material is homeges, isotropic, and linearly elastic. The
Young modulus and Poisson ratio are respecti¥ely100 GPz andv =0.3. A FEM model of

the delaminated beam has been developed using ABB®DUWoftware with CPS8 (8-node
guadratic plane stress) elements (Fig. 6). Theeesize in the crack-tip region f&a = 0.5 mm.

Figure 6: FEM model of the delaminated cantilevear ¢ = 4/16,M; =1 N m,M, = -20 N m).



4.2Analysis results
Figure 7 shows the mode | and Il contributionshi® ERR for fixedM,; =1 N m and variable
M,, for four select values of the thickness ratjo;Triangles and circles denote values computed

using the standard and revised VCCT through Egsaif@ (13), respectively. Continuous lines,
reported for reference, represent the analytidatism by Suo and Hutchinson [6].
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Figure 7: Mode | and Il ERR contributions as fuons of the bending moment in the lower
sublaminatea 7= 1/19;b = 2/18;c n = 4/16;d n=10/10 = 1.

For the maximum crack asymmetry considered (Fiy. B@h the standard and revised VCCT
differ to varying degrees from the analytical smnot Most notably, the standard VCCT yields



physically inconsistent, negative values fG and G, in certain ranges oM, . As the

asymmetry decreases (Figs. 7b and 7c¢), the diswcagsabetween the analytical and numerical
predictions diminish as well. Lastly, in the caseasymmetric crack (Fig. 7d), the predictions of
the standard and revised VCCT coincide exactly botth agree very well with the analytical
solution.

Physical inconsistencies in the standard VCCT careover be highlighted by examining the
plot of therelative modal contributionsto G,

G G
y':EI and y, :E”' (15)
as functions of the bending moment in the lowelauinate, M, (Fig. 8). Negative values d,
correspond toy, <0 and y, >1; likewise, negative values doB, correspond toy, >1 and

¥, <0. However, values of, and y, greater than unity are not physically acceptahtethey
would imply that one of the two modal contributidnss is greater than the whole.
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Figure 8: Relative modal contributions to the ERRumnctions of the bending moment in the
lower sublaminater{ = 1/19).



5 CONCLUSIONS

The study has brought to light a weak point in standard VCCT, which in some
circumstances predicts physically inconsistentatieg values for the modal contributions to the
ERR. In particular, for I/l mixed-mode fracturegiems, this behaviour can be observed in the
case of bodies with asymmetric cracks for whichréhis a coupling (indicated by, #0)

between the crack-tip forces and relative displag@min thex- and z-directions (respectively,
parallel and orthogonal to the crack direction).

To overcome this drawback, a revised VCCT has lbeseloped, which associates the mode |
and Il ERR contributions to the works done in aahly defined two-step process of closure of the
virtually extended crack. An implementation procedihas also been suggested based on
computation of flexibility coefficients, which cdre incorporated simply and effectively into any
existing FEM package.

The effectiveness of the proposed method has bestadt by considering the problem of a
delaminated cantilever beam subjected to bendimgles. The overall thickness of the beam is
kept constant, while several positions of the délation are considered to highlight the effects of
crack asymmetry. The mode | and Il contributionsh® ERR,G, and G, , have been computed

using the standard and revised VCCT, as well aanladytical solution by Suo and Hutchinson [6].
While no significant differences can be observetivben the predictions for the tot@l via the

compared methods, the predictions €grand G, coincide only for the case of a symmetrical

crack, and diverge increasingly as crack asymmgtows. For the largest crack asymmetry
considered (thickness ratip=1/19), manifestly inconsistent, negative values @rand G, are

obtained using the standard VCCT, while the reviS&ICT has consistently proven able to
furnish a physically consistent partitioning of finecture modes.

At a deeper investigation, the physically incoresistpredictions of the standard VCCT could
be shown to be due to the lack of energetic orthality between the crack-tip force components
used to compute the modal contributions to the ERfrergetic orthogonality is instead ensured
between the crack-tip force components consideredhb revised VCCT. However, a more
detailed discussion on this topic — as well asl@nghenomena of contact, interpenetration, and
friction between the crack surfaces — is postpdaoete full version of the present paper [7].
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