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SUMMARY. The virtual crack closure technique (VCCT) is a well-established method for 
computing the energy release rate (ERR) when analysing fracture problems via the finite element 
method. For mixed-mode fracture problems, the VCCT is also commonly used to partition the 
fracture modes, i.e. to determine the ERR contributions related to fracture modes I, II, and III. A 
perhaps little known fact, however, is that in some circumstances the standard VCCT predicts 
physically inconsistent, negative values for the modal contributions to the ERR. Focusing on I/II 
mixed-mode problems, this paper presents a revised VCCT which furnishes a physically consistent 
partitioning of fracture modes by associating the mode I and II ERR contributions to the works 
done in a suitably defined two-step process of closure of the virtually extended crack. 

1 INTRODUCTION 

The virtual crack closure technique (VCCT) is a well-established method for calculating the 
energy release rate (ERR) when analysing fracture problems via the finite element method (FEM). 
The technique is based on the numerical implementation of Irwin’s crack closure integral [1], as 
first proposed for two-dimensional problems by Rybicki and Kanninen [2], and later extended to 
three-dimensional problems by Shivakumar et al. [3]. In recent years, the VCCT has gained great 
popularity for the study of mixed-mode fracture problems, such as the delamination of composite 
materials and interfacial fracture between dissimilar materials. In these cases, the VCCT is used to 
compute not only the total ERR, but also the contributions of the three fracture modes (I or 
opening, II or sliding, and III or tearing) [4]. 

A perhaps little known fact, however, is that in some circumstances (for instance, bodies with 
asymmetric cracks subjected to certain load conditions), the standard VCCT predicts physically 
inconsistent, negative values for the modal contributions to the ERR. Although this potential 
shortcoming of the technique has already been mentioned in the literature [5], it does not seem to 
have received the attention it deserves. 

Focusing on I/II mixed-mode fracture problems, we develop a revised VCCT that associates 
the mode I and II ERR contributions to the works done in a suitably defined two-step process of 
closure of the virtually extended crack. Furthermore, we suggest an implementation procedure 
based on computation of flexibility coefficients. 

The effectiveness of the proposed method is then tested by considering the problem of a 
delaminated cantilever beam subjected to bending couples. The overall thickness of the beam is 
kept constant, while several positions of the delamination are considered to highlight the effects of 
crack asymmetry. The mode I and II contributions to the ERR are computed using both the 
standard and revised VCCT. For the sake of comparison, the same quantities are also computed 
using the analytical solution by Suo and Hutchinson [6]. Thus, the revised VCCT demonstrates its 
ability to furnish physically consistent predictions also in cases where the standard technique fails. 

 



At a deeper investigation, the physically inconsistent predictions of the standard VCCT could 
be shown to be due to the lack of energetic orthogonality between the crack-tip force components 
used to compute the mode I and II ERR contributions. However, a more detailed discussion on this 
topic – as well as on the phenomena of contact, interpenetration, and friction between the crack 
surfaces – is postponed to the full version of the present paper [7]. 

2 STANDARD VCCT 

2.1 Computation of ERR 

Let us consider the two-dimensional (plane stress or plane strain) problem of a linearly elastic, 
continuous body of width B, affected by a straight crack of length a, with prescribed loads and 
kinematic boundary conditions (Fig. 1a). A global Cartesian reference system, Oxz, is fixed with 
the x- and z-axes respectively parallel and orthogonal to the crack direction. A FEM model of the 
problem is defined using a mesh made of 4-node elements (Fig. 1b). Let A1, B1, C1, …, and A2, B2, 
C2, …, denote the nodes placed on the crack’s lower and upper surfaces, respectively. The facing 
upper and lower nodes are initially bonded together by suitable internal constraints, which can be 
progressively released in order to simulate crack growth. The initial position of the crack tip is 
taken to be at node C1 (coincident with C2). 

 

 

Figure 1: Problem formulation: a cracked continuous body; b FEM mesh. 
 

According to Irwin [1], the energy dissipated by a virtual (i.e. small and kinematically 
compatible) extension of the crack is equal to the work that would be done to close the crack by 
the forces that were acting on the new crack surfaces prior to crack extension. Within the FEM 
framework adopted, the energy release rate can then be computed as 
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where CX  and CZ  are the internal forces (Fig. 2a) acting at the crack-tip node along the x- and z-

directions, respectively, and ∆ Cu  and ∆ Cw  are the corresponding relative displacements (Fig. 2b) 

that occur when the crack is virtually extended by a length ∆a (equal to the size in the x-direction 
of the elements in the neighbourhood of the crack tip). 

 

 

Figure 2: Standard VCCT: a crack-tip forces; b crack-tip relative displacements. 

2.2 Fracture mode partitioning 

When crack growth occurs under I/II mixed-mode fracture conditions 
 

 I II= +G G G , (2) 

 
where IG  and IIG  are respectively the mode I and II contributions to the energy release rate. In 

line with standard VCCT, the modal contributions are identified simply by the two addends in 
parentheses in Eq. (1): 
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Now, because of their physical meaning, not only G, but also IG  and IIG , must be non-

negative quantities [1]. Instead, as the examples in Section 4 below will show, in the case of 
bodies with asymmetric cracks, Eqs. (3) may yield negative values for some loading conditions. 
These physically inconsistent results appear when either of the nodal forces, CX  or CZ , turns out 

to be opposite in direction with respect to the corresponding relative displacement, ∆ Cu  or ∆ Cw . 

To understand why this behaviour occurs, consider that the relative displacements occurring at the 
crack tip for a virtual crack extension are equal in magnitude (and opposite in sign) to the relative 
displacements produced by application of the crack-tip forces. Thus, for linear models, 



 
 and∆ = + ∆ = +C xx C xz C C zx C zz Cu f X f Z w f X f Z , (4) 

 
where , , , andxx xz zx zzf f f f  are flexibility coefficients ( =xz zxf f  by virtue of Betti–Maxwell’s 

reciprocity theorem). 
From Eqs. (4) it can be seen that, if 0≠xzf  (which is generally true for bodies with 

asymmetric cracks), there is a coupling between the crack-tip force in the z-direction and the 
relative displacement in the x-direction and, vice versa, between the crack-tip force in the x-
direction and the relative displacement in the z-direction. As will be shown in the following, this 
coupling has to be taken into account carefully in order to obtain physically consistent partitioning 
of the fracture modes. 

By substituting Eqs. (4) into (1), we obtain the ERR as a quadratic form of the crack-tip forces, 
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A physically consistent method for fracture mode partitioning requires decomposing G into the 

sum of two non-negative contributions related to fracture modes I and II. Inspection of Eq. (5) 
leads quite naturally to the assumption that the (non-negative) terms depending on xxf  and zzf  are 

related to IIG  and IG , respectively. Instead, how to partition the term (undefined in sign) 

depending on the coupling flexibility coefficient, xzf , is not so obvious. By substituting Eqs. (4) 

into (3), we obtain 
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hence, according to the standard VCCT, the term depending on xzf  is equally partitioned between 

IG  and IIG . Since the abovementioned term is undefined in sign, it is predictable that in some 

circumstances negative values for IG  and IIG  can be obtained using the standard VCCT. 

3 REVISED VCCT 

3.1 Physically consistent partitioning of fracture modes 

The revised VCCT proposed here takes the contributions IG  and IIG  as associated to the 

works done in a suitably defined two-step closure process of the virtually extended crack. In step I, 
corresponding to fracture mode I (opening), the crack-tip relative displacement in the z-direction, 
∆ Cw , is closed completely by applying the necessary crack-tip force, (I)

CZ , in the same z-direction. 

At the same time, a null force, (I) 0=CX , is applied in the x-direction, but, because of coupling, the 

crack-tip relative displacement in the x-direction, ∆ Cu , is partly closed (if 0>xzf ), or further 

opened (if 0<xzf ), by a quantity (I)∆ Cu  (Fig. 3a). In step II, corresponding to fracture mode II 

(sliding), the residual crack-tip relative displacement in the x-direction, (II) (I)∆ = ∆ − ∆C C Cu u u , is 

closed by applying suitable crack-tip forces, (II) =C CX X  and (II) (I)= −C C CZ Z Z  (Fig. 3b). 



 

Figure 3: Revised VCCT: a step I, closure of the crack-tip relative displacement in the z-direction 
(mode I); b step II, closure of the crack-tip relative displacement in the x-direction (mode II). 

 
By using Eqs. (4), the crack-tip forces to be applied in step I are determined as 
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These forces produce the crack-tip relative displacements 

 

 (I) (I) (I) (I)and∆ = = ∆ ∆ = = ∆xz
C xz C C C zz C C

zz

f
u f Z w w f Z w

f
. (8) 

 
Note that by virtue of Eqs. (7), in the presence of coupling ( 0≠xzf ), (I)

CZ  is generally different 

from the actual crack-tip force, CZ . 

The crack-tip forces to be applied in step II are the total crack-tip force in the x-direction and 
the residual crack-tip force in the z-direction, 
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By using Eqs. (4), (7), (8), and (9), the ensuing crack-tip relative displacements are determined as 
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Therefore, in step II the residual crack-tip relative displacement in the x-direction is cancelled 
exactly, while no further relative displacement in the z-direction is produced. 



Accordingly, the mode I and II contributions to the ERR are 
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By substituting Eqs. (7)–(10) into (11), we obtain 
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which are clearly non-negative quantities. Thus, in contrast to the standard VCCT, the revised 
VCCT furnishes a physically consistent partitioning of the fracture modes. Eqs. (12) also reveal 
the conditions for pure fracture modes: pure mode I ( II 0=G ) is obtained for 0=CX , pure mode 

II ( I 0=G ) for 0∆ =Cw . 

3.2 Implementation procedure 

In standard FEM analysis, nodal displacements are used as the principal unknowns, while 
nodal forces are computed from element stresses as secondary results. Therefore, it would be 
preferable to determine IG  and IIG  based on the values of the crack-tip relative displacements 

alone. To this aim, we substitute Eqs. (4) into the second of Eqs. (12) to obtain 
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Figure 4: Computation of flexibility coefficients: a unit forces in the x-direction; b unit forces in 
the z-direction. 

 



The flexibility coefficients entering into Eqs. (13) can be readily evaluated by considering the 
FEM mesh with the virtually extended crack and conducting two preliminary analyses for when 
unit forces are applied at nodes C1 and C2 in the x- and z-directions, respectively (Fig. 4a and 4b). 
The flexibility coefficients are equal to the corresponding relative displacements: 
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4 APPLICATIVE EXAMPLE 

4.1 Test problem 

The effectiveness of proposed method is now tested by considering the problem shown in 
Figure 5, where a delaminated cantilever beam is subjected to two bending couples, 1M  and 2M . 

 

 

Figure 5: Delaminated cantilever beam subjected to bending couples. 
 

The beam is of length 100 mm=L , width 25 mm=B , and thickness 10 mm=H . The crack 

length is 50 mm=a . The delamination splits the beam into two sublaminates of thicknesses 1H  

and 2H . Several values of the thickness ratio, 1 2/= H Hη , are considered in order to highlight the 

effects of crack asymmetry. The material is homogeneous, isotropic, and linearly elastic. The 
Young modulus and Poisson ratio are respectively 100 GPa=E  and 0.3=ν . A FEM model of 

the delaminated beam has been developed using ABAQUS® software with CPS8 (8-node 
quadratic plane stress) elements (Fig. 6). The element size in the crack-tip region is 0.5 mm∆ =a . 

 

 

Figure 6: FEM model of the delaminated cantilever beam (η = 4/16, M1 = 1 N m, M2 = –20 N m). 



4.2 Analysis results 

Figure 7 shows the mode I and II contributions to the ERR for fixed 1 1 N m=M  and variable 

2M , for four select values of the thickness ratio, η. Triangles and circles denote values computed 

using the standard and revised VCCT through Eqs. (3) and (13), respectively. Continuous lines, 
reported for reference, represent the analytical solution by Suo and Hutchinson [6]. 
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Figure 7: Mode I and II ERR contributions as functions of the bending moment in the lower 
sublaminate: a η = 1/19; b η = 2/18; c η = 4/16; d η = 10/10 = 1. 

 
For the maximum crack asymmetry considered (Fig. 7a), both the standard and revised VCCT 

differ to varying degrees from the analytical solution. Most notably, the standard VCCT yields 



physically inconsistent, negative values for IG  and IIG  in certain ranges of 2M . As the 

asymmetry decreases (Figs. 7b and 7c), the discrepancies between the analytical and numerical 
predictions diminish as well. Lastly, in the case of a symmetric crack (Fig. 7d), the predictions of 
the standard and revised VCCT coincide exactly and both agree very well with the analytical 
solution. 

Physical inconsistencies in the standard VCCT can moreover be highlighted by examining the 
plot of the relative modal contributions to G, 
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as functions of the bending moment in the lower sublaminate, 2M  (Fig. 8). Negative values of IG  

correspond to I 0<γ  and II 1>γ ; likewise, negative values of IIG  correspond to I 1>γ  and 

II 0<γ . However, values of Iγ  and IIγ  greater than unity are not physically acceptable, as they 

would imply that one of the two modal contributions to G is greater than the whole. 
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Figure 8: Relative modal contributions to the ERR as functions of the bending moment in the 
lower sublaminate (η = 1/19). 



5 CONCLUSIONS 

The study has brought to light a weak point in the standard VCCT, which in some 
circumstances predicts physically inconsistent, negative values for the modal contributions to the 
ERR. In particular, for I/II mixed-mode fracture problems, this behaviour can be observed in the 
case of bodies with asymmetric cracks for which there is a coupling (indicated by 0≠xzf ) 

between the crack-tip forces and relative displacements in the x- and z-directions (respectively, 
parallel and orthogonal to the crack direction). 

To overcome this drawback, a revised VCCT has been developed, which associates the mode I 
and II ERR contributions to the works done in a suitably defined two-step process of closure of the 
virtually extended crack. An implementation procedure has also been suggested based on 
computation of flexibility coefficients, which can be incorporated simply and effectively into any 
existing FEM package. 

The effectiveness of the proposed method has been tested by considering the problem of a 
delaminated cantilever beam subjected to bending couples. The overall thickness of the beam is 
kept constant, while several positions of the delamination are considered to highlight the effects of 
crack asymmetry. The mode I and II contributions to the ERR, IG  and IIG , have been computed 

using the standard and revised VCCT, as well as the analytical solution by Suo and Hutchinson [6]. 
While no significant differences can be observed between the predictions for the total G via the 
compared methods, the predictions for IG  and IIG  coincide only for the case of a symmetrical 

crack, and diverge increasingly as crack asymmetry grows. For the largest crack asymmetry 
considered (thickness ratio 1/19=η ), manifestly inconsistent, negative values for IG  and IIG  are 

obtained using the standard VCCT, while the revised VCCT has consistently proven able to 
furnish a physically consistent partitioning of the fracture modes. 

At a deeper investigation, the physically inconsistent predictions of the standard VCCT could 
be shown to be due to the lack of energetic orthogonality between the crack-tip force components 
used to compute the modal contributions to the ERR. Energetic orthogonality is instead ensured 
between the crack-tip force components considered by the revised VCCT. However, a more 
detailed discussion on this topic – as well as on the phenomena of contact, interpenetration, and 
friction between the crack surfaces – is postponed to the full version of the present paper [7]. 

 
References 

[1] Irwin, G.R., “Fracture”, in Handbuch der Physik, Flugge, S. (ed.), vol. VI, Springer, Berlin, 
551–590 (1958). 

[2] Rybicki, E.F., Kanninen, M.F., “A finite element calculation of stress intensity factors by a 
modified crack closure integral”, Engng. Fract. Mech., 9, 931–938 (1977). 

[3] Shivakumar, K.N., Tan, P.W., Newman, J.C., “A virtual crack-closure technique for 
calculating stress intensity factors for cracked three dimensional bodies”, Int. J. Fract., 36, 
R43–R50 (1988). 

[4] Krueger, R., “Virtual crack closure technique: History, approach, and applications”, Appl. 
Mech. Rev., 57, 109–143 (2004). 

[5] Wang, S., Guan, L., “On fracture mode partition theories”, Comput. Mater. Sci. (in press). 
[6] Suo, Z., Hutchinson, J.W., “Interface crack between two elastic layers”, Int. J. Fract., 43, 1–

18 (1990). 
[7] Valvo, P.S., “A revised virtual crack closure technique for physically consistent fracture mode 

partitioning”, Int. J. Fract. (submitted). 


