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ABSTRACT 

The paper presents a method to partition fracture modes in delaminated beams. According to 
classical laminated beam theory, the axial, shear and bending deformabilities, as well as 
bending-extension coupling, are taken into account. The kinematics of crack growth is 
analysed by defining the crack-tip displacement rates as the relative displacements occurring 
at the crack tip per unit crack extension. Hence, by considering the corresponding work done 
by the forces exchanged between the separating sub-laminates, explicit expressions for the 
energy release rate and its mode I and II contributions are deduced. 
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INTRODUCTION 

Delamination fracture [1] can be analysed via classical laminated plate theory [2] by 
modelling delaminated laminates as assemblages of sublaminates, connected by rigid or 
deformable joints and interfaces. Delamination growth occurs when the energy release 
rate, G, reaches a critical value, Gc [3]. In general, however, delamination cracks propagate 
under mixed-mode fracture conditions, so that it is necessary to partition G into two additive 
contributions, GI and GII, related to fracture modes I (opening) and II (sliding), respectively [4]. 

For rigidly connected sublaminates, Williams [5] proposed a global method to partition the 
energy release rate, based on analysis of the global forces acting on the cracked laminate. 
Schapery and Davidson [6] proposed a method based on classical plate theory. 
Independently, Suo and Hutchinson developed a local method [7], which considers the 
singular stress field at the crack tip of a semi-infinite crack propagating between two infinite 
elastic layers. On the other hand, if the sublaminates are connected by a deformable 
interface, the modal contributions to G can be computed based on the peak values of the 
interfacial stresses at the crack tip [8–10], or via an adaptation of the local method [11]. 

This paper presents a method to partition fracture modes in planar laminated beams affected 
by through-the-width delaminations. To this aim, a delaminated beam is considered as an 
assemblage of three rigidly connected laminated beams. According to classical laminated 
beam theory, the axial, shear and bending deformabilities, as well as bending-extension 
coupling, are taken into account. Under general load conditions, a small extension of the 
existing crack is considered. The kinematics of crack growth is analysed by defining the 
crack-tip displacement rates as the relative displacements occurring at the crack tip per unit 
crack extension. Besides, the crack-tip forces exchanged between the separating sub-
laminates are computed. Lastly, by considering the work done by the crack-tip forces for the 
corresponding crack-tip displacement rates, explicit expressions for the energy release rate 
and its modal contributions are deduced. 
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DELAMINATED BEAM MODELLING 

Beam-theory model of a delaminated laminate 

Consider a laminate AB of length L, thickness H = 2 h, and width W, affected by a through-
the-width delamination of length a (Fig. 1). The delamination runs from the end section A to 
an intermediate section C to which the crack tip C belongs, thus splitting the laminate into 
two sublaminates of thicknesses H1 = 2 h1 and H2 = 2 h2, respectively. The length of the 
unbroken part of the laminate, included between sections C and B, is = −b L a . 

 
Fig. 1: The delaminated laminate subjected to concentrated and distributed loads 

          
Fig. 2: The delaminated laminate as an assemblage of three laminated beams 

The laminate is modelled as an assemblage of three laminated beams (identified by the 
numbers α = 1, 2, 3), each rigidly connected to the others at section C (Fig. 2). Beams No. 1 
and 2 coincide with the upper and lower sublaminates, respectively, in the delaminated part 
of the laminate (between sections A and C). Beam No. 3 coincides with the unbroken part of 
the laminate (between sections C and B). A rectangular reference system Ozx is fixed with 
the origin O at the intersection between section C and the centreline of beam No. 3. The x- 
and z-axes are aligned with the laminate’s axial and transverse directions, respectively. 
Correspondingly, uα and wα denote the axial and transverse displacements of the beams’ 
centrelines, and φα denote the cross sections’ rotations, positive if counter-clockwise. The 
laminate is supposed to be in equilibrium under a given system of in-plane loads. 
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According to Timoshenko’s beam theory, the axial strain, shear strain, and curvature in the 
sublaminates are 

 α α α
α α α α

φε γ φ κ= = =+
du dw d

x x x x
dx dx dx

, ,( ) ( ) ( ) ( ) .  (1) 

Hence, in line with classical laminated beam theory, the axial force, shear force, and bending 
moment are 

 [ , , [ ,( ) ( ) ( )] ( ) ( ) ( ) ( ) ( )]W A B W C W B DN x x x Q x x M x x xα α α α α α α α α α α α αε κ ε κγ= = =+ +  (2) 

where Aα, Bα, Cα, and Dα are, respectively, the extension stiffness, bending-extension 
coupling stiffness, shear stiffness, and bending stiffness (per unit width) [2]. For what follows, 
it is convenient to define also the corresponding extension compliance, bending-extension 
coupling compliance, shear compliance, and bending compliance, 

 
2 2 2

, , ,
1

.
D B A

a b c d
A D B A D B A D BC

α α α
α α α α

αα α α α α α α α α

= = − = =
− − −

 (3) 

Crack-tip relative displacements and crack-tip disp lacement rates 

Imagine first that a small segment S of the laminate is cut out in the neighbourhood of the 
crack tip C (Fig. 3a). Regardless of the actual load system applied to the laminate, if no 
concentrated loads are applied at the crack-tip cross section, the segment S will be in 
equilibrium under the action of the internal forces applied on the cross sections close to the 
crack tip. Thus, if N1, Q1, M1 and N2, Q2, M2 respectively denote the internal forces in beams 
No. 1 and 2 for →x 0 , the internal forces in beam No. 3 must be 

 = + = + = + − +N N N Q Q Q M M M N h N h3 1 2 3 1 2 3 1 2 1 2 2 1, , .  (4) 

Next, suppose that the crack propagates in a self-similar way, increasing its length by a small 
amount, ∆a. Hence, the crack-tip segment S transforms into the segment S0 (Fig. 3b), where 
the crack tip reaches a new position, identified by point D, and the point C splits into two 
points, C1 and C2, belonging to beams No. 1 and 2, respectively. Under fixed load conditions, 
the internal forces in the cross sections close to the crack tip do not change appreciably, so 
that S0 can be considered in equilibrium under the same internal forces acting on S. 

a. Before crack propagation   b. After crack propagation 

 
Fig. 3: Elementary segment of the laminate in the neighbourhood of the crack tip 
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Fig. 4: Crack-tip relative displacements in system S0 

Displacement compatibility, however, is lost when S transforms into S0, as in the latter 
system points C1 and C2 generally undergo non-zero relative displacements (Fig. 4), 
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 (5) 

where all the (generalised) displacements are tacitly evaluated at the crack-tip section (x = 0). 

By solving an auxiliary problem of a laminated cantilever beam loaded at its end (details are 
here omitted for brevity), it is easily shown that the crack-tip relative displacements are 
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 (6) 

where higher-order powers of ∆a have been neglected. In order to eliminate the dependence 
on ∆a, the crack-tip displacement rates are defined as 
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 (7) 

By recalling equations (2) and (3), it can be shown that 

 φη ε ε κ κ η γ γ η κ κ= − + + = − = −u wh h1 2 1 1 2 2 1 2 1 2, , ,  (8) 

where all the strain measures are evaluated at the crack-tip section (x = 0). 
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Crack-tip forces 

Displacement compatibility of system S can be recovered by superimposing to system S0 an 
auxiliary system, SC, where suitable axial forces, NC, transverse forces, QC, and couples, MC, 
are exchanged between points C1 and C2 (Fig. 5). 

 
Fig. 5: Crack-tip forces in system SC. 

The intensities of the above crack-tip forces are determined in such a way as to restore 
displacement compatibility previous to crack growth. To this aim, the crack-tip displacement 
rates associated with system SC are first computed, 

 , , ,C N M C Q C N M
u u C u w C w C CCN M Q N Mφ φ φη η η η η η η η= − − = − = − −  (9) 

where 
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are generalised compliances, which describe the deformability of the crack-tip element. Then, 
compatibility is restored by imposing 

 0, 0, 0.C C C
u u w w φ φη η η η η η+ = + = + =  (11) 

By substituting equations (9) into (10) and solving, the crack-tip forces are obtained, 

 , , .
M M N N

u u u uw
C C CN M M N Q N M M N

u u w u u

N Q Mφ φ φ φ

φ φ φ φ

η η η η η η η ηη
η η η η η η η η η

− −
= = =

− −
 (12) 

ENERGY RELEASE RATE AND FRACTURE MODE PARTITIONING 

Energy release rate 

Under fixed displacements [3], the energy release rate associated with crack growth is 

 
0

1
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a

U
G
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, (13) 
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where ∆U is the change in strain energy related to the increase in crack length ∆a. According 
to the definitions given in the previous section, 

 ∆ = − = − CU U U U0 , (14) 

where U, U0 and UC are the strain energies in systems S, S0, and SC, respectively. In 
particular, Clapeyron’s theorem yields 

 
1

( )
2C C C CU N u Q w M φ= ∆ + ∆ + ∆ , (15) 

where ∆u, ∆w, and ∆φ are the crack-tip relative displacements in system S0, given by 
equations (6), which are equal in magnitude and opposite in sign to those caused by the 
crack-tip forces in SC. By substituting equations (14) and (15) into (13), and remembering 
equations (7), the energy release rate is obtained, 

 
1

( )
2 C u C w CG N Q M
W φη η η= + + . (16) 

Furthermore, by substituting equations (9) and (11) into (16), the energy release rate can be 
expressed in terms of the crack-tip forces only, 

 2 2 21
[ ( ) ]

2
N N M M Q
u C u C C C w CG N N M M Q

W φ φη η η η η= + + + + , (17) 

or, by substituting equations (12) into (17), in terms of the crack-tip displacement rates only, 

 
2 2 2( )1

[ ]
2
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N M N M Q
u u w

G
W
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−
. (18) 

Fracture mode partitioning 

In planar fracture mechanics problems the energy release rate can be decomposed as 

 I IIG G G= + , (19) 

where the addends GI and GII are related to fracture modes I (opening) and II (sliding), 
respectively. Clearly, GI should depend on the crack-tip displacement rates ηw and ηφ, while 
GII should depend on ηu. However, some caution is required in order to correctly partition G 
into its modal contributions. By close examination of equations (17) and (18), it is apparent 
that the terms depending on QC and ηw contribute to GI only (incidentally, these terms are 
relevant only if shear deformability is considered), while the terms depending on NC, MC and 
ηu, ηφ are coupled and, hence, contribute to both GI and GII. To sum up, it is convenient to 
start from determining the mode II contribution, which must be of the form: 

 
η

= C uN
G

W

II

II 2
, (20) 

where 

 ηη= N
C u uN II  (21) 
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is the crack-tip axial force that would cancel the crack-tip sliding displacement rate, ηu, if no 
crack-tip couple, MC, were present. Remembering equations (10) and (11), it is apparent that 

II
CN  is in general distinct from NC, since the latter also contributes to cancel ηφ, but they 

coincide if 0M N
u φη η= = . This happens, for instance, when the delaminated sublaminates are 

uncoupled in bending-extension (b1 = b2 = 0) and balanced (d1h1 = d2h2). By substituting 
equation (21) into (20) and (19), the modal contributions to the energy release rate in terms 
of the crack-tip displacement rates are finally obtained, 

 

φ
φ

φ
φ

η
η η

η ηη
η η η
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−
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EXAMPLE: THE ADCB TEST 

As an example, the presented method is applied to study the asymmetric double cantilever 
beam (ADCB) test (Fig. 6), usable to measure mixed-mode delamination toughness [10]. 

 
Fig. 6: The asymmetric double cantilever beam (ADCB) test 

The internal forces at the crack-tip sections in this case are 

 1 1 1 2 2 20, , ; 0, , .N Q P M Pa N Q P M Pa= = = = = − = −  (23) 

Equations (7) yield the crack-tip displacement rates, 

 1 1 2 2 1 21 2( ) / , / , ( ) / ,( )u wPa d h d h W P W Pa d d Wc c φη η η= − = + = +  (24) 

and equations (10) furnish the crack-tip compliances, 

 
2 2
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u u

Q
w

a a d h d h W d h d h W d d W
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φ φη η η η

η
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= +
 (25) 

Lastly, equations (24) yield the mode I and II contributions to the energy release rate, 

− −
= + − + + =

+ + + + + +
P ad h d h d h d hP a P

G d d Gc c
WW a a d h d h W a a d h d h

2 22 22 2 2
1 2 2 1 1 2 21

I 1 2 II1 2 22 2 2 2 2 2
1 2 1 1 2 2 1 2 1 1 2 2

( ) ( )
[ ] ( ), .

22 2
 (26) 

It is interesting to notice that equations (26) are identical with those that can be obtained from 
the elastic-interface model of the ADCB test [10] in the limit case of a rigid interface. 
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CONCLUSIONS 

A novel method to partition fracture modes in planar laminated beams affected by through-
the-width delaminations has been presented. According to classical laminated beam theory, 
the axial, shear and bending deformabilities are taken into account. Moreover, the method 
considers bending-extension coupling, which apparently had not been contemplated before 
by the fracture mode partition methods proposed in literature. The kinematics of crack growth 
is analysed by introducing the crack-tip displacement rates, defined as the relative 
displacements occurring at the crack tip per unit crack extension. These quantities have 
been used to determine explicit expressions for the crack-tip forces, energy release rate and 
its modal contributions in delaminated beams. 
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