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SUMMARY. The paper presents a beam-theory basedadeto partition fracture modes in
planar laminated beams affected by through-thebwidé¢laminations. According to classical
laminated beam theory, the axial, shear and berdffigrmabilities, as well as bending-extension
coupling, are taken into account. The kinematiccraick growth is analysed by defining the
crack-tip displacement rates as the relative digpteents at the crack tip per unit crack extension.
Besides, the crack-tip forces exchanged betweesdparating laminates are computed. Lastly, by
considering the work done by the crack-tip forcesthe corresponding crack-tip displacement
rates, explicit expressions for the energy releateand its modal contributions are deduced.

1 INTRODUCTION

Classical laminated plate theory [1] is commonlylaggd in the analysis of delamination
fracture in composites [2, 3], since the delamiddteminates are modelled as assemblages of
sublaminates connected by rigid or deformable goamtd interfaces. Besides, delamination growth
criteria usually assume that crack propagation gcethen the energy release ra@g,reaches a
critical value, G. [4]. In general, however, delamination cracks pggte under mixed-mode
fracture conditions, so it becomes necessary ttitiparthe energy release rate into two additive
contributions,G, andG,;, related to fracture modes | (opening) and lld{alj), respectively. To
this end, various alternative, but not equivalemgthods have been proposed.

For rigidly connected sublaminates, Williams [Sivdmped aglobal methodo partition the
energy release rate, based on analysis of the Igfob@es acting on the cracked laminate.
Schapery and Davidson [6] observed that Willianssumptions were not generally fulfilled for
asymmetrically delaminated laminates and proposedethod based on classical plate theory.
Alternatively, Suo and Hutchinson developetbeal method7], where the mode mixity, i.e. the
ratio G, / G, is determined by analysing the singular strems fat the crack tip of a semi-infinite
crack between two infinite isotropic elastic laydRecently, the local method has been extended
to include the effects of shear forces at the ctigcf8] and orthotropic materials [9].

On the other hand, if the sublaminates are condeoyea deformable interface, the modal
contributions taG can be computed directly, based on the (peak)esabd the interfacial stresses
at the crack tip [10-13]. Nonetheless, Qiao and §\aHr], yet considering a deformable interface,
proposed to evaluate the mode mixity via an admptadf the local method. This approach
appears somehow questionable since the local medhigihally developed in the context of plane
elasticity, assumes that a stress singularity ésgmt at the crack tip, but this hypothesis do¢s no
hold true when the sublaminates are connectedd®faamable (elastic) interface.

In this paper we show how the energy release ssiecéated with the growth of a delamination
in a laminated beam can be partitioned into its ahadntributions within the context of beam
theory. To this aim, we consider a laminated beaffected by a through-the-width delamination,
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as an assemblage of three rigidly connected lamdnia¢ams. Each beam is modelled according to
classical laminated beam theory, while taking irtocount the axial, shear and bending
deformabilities, as well as bending-extension cimgplUnder general load conditions, a small
extension of the existing crack is considered. Tthes kinematics of crack growth is analysed by
defining thecrack-tip displacement ratess the relative displacements occurring at thekctig
per unit crack extension. Besides, tnack-tip forcesexchanged between the separating laminates
are computed. Lastly, by considering the work doyéhe crack-tip forces for the corresponding
crack-tip displacement rates, explicit expressidms the energy release rate and its modal
contributions are deduced.

One example is presented to illustrate the effeats of the method.

2 DELAMINATED BEAM MODELLING

2.1Beam-theory model of a delaminated laminate

Consider a laminataB of lengthL, thicknesH = 2 h, and widthB, affected by a through-the-
width delamination of lengtla (Fig. 1). The delamination runs from the end seci to the
intermediate sectio€, to which the crack tifC belongs, thus splitting the laminate into two
sublaminates of thicknessél = 2h; andH, = 2h,, respectively. We denote with= L -a the
length of the unbroken part of the laminate, ineldithetween sectiordandB.
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Figure 1: Delaminated laminate subjected to comatsd and distributed loads.

We suppose the laminate to be in equilibrium urideraction of a known system of in-plane
concentrated and distributed loads. Moreover, vgeirae that no out-of-plane effects are present,
so that the delaminated laminate can be modelled @anar laminated beam or, more precisely,
as an assemblage of three planar laminated beantsrigidly connected to the others at sec@on
(Fig. 2a). In particular, beams 1 and 2 correspomdthe upper and lower sublaminates,
respectively, in the delaminated part of the lan@n@etween section& and C), while beam 3
corresponds to the unbroken part (between secti@miB).

A rectangular reference systedzxis fixed with the originO at the intersection between the
crack-tip cross section and the centreline of theroken part of the laminate, tle andz-axes
aligned with the laminate’s axial and transversedtions, respectively (Fig. 2b). Correspondingly,
we indicate withu,(xX) andw,(x) the axial and transverse displacements of thenbeeentrelines,
and with ¢,(x) their cross sections’ rotations, positive if ctarclockwise (here and in the
following the beams are identified by the subseript 1, 2, 3).
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(b)

Figure 2: (a) The delaminated laminate as an dds@m of three laminated beams;
(b) An enlargement of the crack-tip region andftked reference system.

According to Timoshenko’s beam theory kinematics,define

L =g, k(= 1)
X dx

£,(X) =

respectively as thaexial strain shear strain andcurvature The related internal forces in beams
are theaxial force shear forceandbending momentespectively, given by

N, (¥ = B[A& (3 +B.k, (3], Q(¥= B p( X MO X= BB&( D4, ( )k (2)

where A,, B,, C,, and D, respectively are thextension stiffnesdending-extension coupling
stiffnessshear stiffnessandbending stiffnes§per unit width) of the beams, computed according
to classical laminated plate theory [1]. By invegtiEgs. (2), we obtain also

£,(x) =[a,N,(¥+b, M,(31/ B y,(x=c, QU X B «,( x=[b, M )x+d, M K .EK3)
where

Da — Ba — i Aa

a, =-——"—, b, =- , d,=—"—, 4
! AaDH_Btzl ! AaDa_Bj ! Ca ! AaDa_Bj ( )

are theextension compliangeébending-extension coupling complianshear compliancgeand
bending compliancef the beams, respectively [1].
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2.2Crack-tip relative displacements and crack-tip téggment rates

Imagine now that a small segmeditof the laminate is cut out in the neighbourhoodhef
crack tipC (Fig. 3a). Regardless of the actual load systepliexpto the laminate, if we exclude
the presence of concentrated loads at the crackftigs section, the segme8twill be in
equilibrium under the internal forces acting on thess sections close to the crack tip. Thus, for
X - 0, if we denote withN;, Q;, M; and N,, Q,, M, the internal forces in beams 1 and 2,
respectively, the internal forces in beam 3 will be

N; =N, + N, Q%: Q+ Qv M,= M+ M~ N1m+ Nzh (5)

Next, suppose that the crack propagates in a isegilas way, increasing its length by a small
amount,Aa. Hence, the crack-tip segmeéatransforms into the segme8g (Fig. 3b), where the
crack tip reaches a new position, identified bynp@i, and the poin€ splits into two pointsC;
and C,, belonging to beams 1 and 2, respectively. If kcrgoowth occurs under fixed load
conditions, the internal forces in the cross sastidose to the crack tip do not change appreciably
and$S, can still be considered in equilibrium under thene internal forces acting &

Thet
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Figure 3: Elementary segments of the laminatdémieighbourhood of the crack tip:
(a) S, before crack propagation; (8), after crack propagation.

Obviously, however, the displacement compatibibtyot preserved by going froBito S, as
in the latter system the poin@ andC, generally undergo non-zero relative displacem@fits 4),

AU=Ug, — U, = (L@ h) - (u+@h),
AW =W, = W = W - W, (6)
Ap=q, -0, =@ - @,

where all the (generalised) displacements ardyamnitiluated at the crack-tip sectiot 0).
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Figure 4: Crack-tip relative displacements in sgsS,.

By solving the auxiliary problem of a laminated tl@ver beam loaded at its end (details are

here omitted for brevity), it is easily shown tlta crack-tip relative displacementse
1
Au DE[(al +b,h) N —(a,=b,h) N,+(b,+dh) M —(b,~d ,h) M}jAa
1
Aw DE(le1 -c,Q) Aa, (7)
Ag D%(blN1 -b,N,+d;M,-d ,M,) Ag

where higher-order powers A& have been neglected.
In order to eliminate the dependenceian we define therack-tip displacement ratess

. Au_ 1
un =AILrPOE=E[(a1+b1hJ) N, —(a,=b,h) Ny+(b,;+d h) M—(b,-d ) M}
Aw _ 1
Ny = AaﬂOE :E(ClQl_CZQZ)' (8)
A 1
My = AllarpoA_::E(blNl —b,N,+d M, -d ,M)).

By recalling Eqgs. (2) and (4), it can be shown that
’7u=£1_£2+K1h1+K2h2' Ny =Vi=V2 NNy, =K=K, 9)

where all the strain measures are evaluated atr#uk-tip sectionx = 0).

The crack-tip displacement rates appear as vepfuiabols for fracture mechanics problems,
since they sum up a description of the kinematfcsrack growth and, in particular, will play a
crucial role in the partition of the energy releeat into its modal contributions.
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2.3Crack-tip forces

The displacement compatibility of syste&rcan be recovered froBy by superimposing to the
latter an auxiliary systengc, where suitable axial forcehl., transverse force§)c, and couples,
Mc, are exchanged between poi@isandC, (Fig. 5).

Ci_ Nc| OcVC1 | Mcp\Ci_|

< D b D D
Nc (2 L 4 QCTCZ - 4 Mc C; L
<L ..... — <L AAAAA — <L ..... —
_ J

Figure 5: Crack-tip forces in syste®g.
The intensities of the abowverack-tip forcesare determined in such a way as to restore

displacement compatibility previous to crack growdfo this aim, we compute the crack-tip
displacement rates associated with syssenwhich turn out to be

C—_

s ==Neny =Mem's n5=-Qend  ng=-Ne,'=Men,", (10)

where

1 1
’7:‘ :E(a1+a2+2b1h1_232h2+d1hzl+d 2hzz)’ ’73/' :’7; :E(b1+b ;4d hi-d h),

w1 1 (1)
My =g @i+dy), m :E(Cl+cz)*
are generalised compliances, which describe thariehebility of the crack-tip element.
Then, we require that
n,+n; =0,  n,+n.=0, n,+n; =0 (12)
By substituting Egs. (10) into (12) and solving floe crack-tip forces, we obtain
My, oM N, _pN
Mo IZN(OOZMU —ZMZS @ :Z_Vwé’ Me = UIZNUUZ“(:—Z(ZMZ:“ ' &



XIX Congresso AIMETA Sessione ST-11a
Ancona, 14-17 settembre 2009 Compositi, laminati, FGM

3 ENERGY RELEASE RATE AND FRACTURE MODE PARTITIONING

3.1Energy release rate
Under fixed displacements [2], the energy release associated with crack growth is

G=-=lim =, (14)

whereAU is the change in strain energy related to thee®e in crack lengtha. According to
the definitions given in the previous section,

AU =U,-U, (15)

whereU andUy are the strain energies in systeghandS,, respectively. Since systefican be
obtained by superimposing systeBysandSg, it is also

U=U,+U., (16)
whereUc is the strain energy in syste®g. By substituting Eq. (15) and (16) into (14), wetain

G=Lim e (17)

The strain energy stored B can be evaluated by direct calculation, howeves imore
convenient to apply Clapeyron’s theorem, whichdgel

U :%(NC Au+ Q. Aw+ M. Ag) (18)

whereAu, Aw, andAg are the crack-tip relative displacements in sys&ngiven by Eqgs. (7),
which are equal in magnitude and opposite in gigihdse caused by the crack-tip forceSdn

By substituting Eqg. (18) into (17), and rememberitgs. (8), we obtain the energy release rate
as a function of the crack-tip forces and cracldigplacement rates,

1
ng(NC”u—FQC,]W—F MC’?w)' (19)

Furthermore, by substituting Egs. (12) into (19 tnergy release rate can be expressed in
terms of the crack-tip forces only,

1
G=oelml N+ +1)) NeMe+zy! ME 478 Q. (20)

or, by substituting Eqgs. (13) into (19), in ternfigkee crack-tip displacement rates only,
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1 [/72,”/75 ~ 01 +05") 140, + 101, ﬁ]

G=
2B nny' =0y n3

(21)

3.2Fracture mode partitioning
In planar fracture mechanics problems the energpase rate can be decomposed as

G:Q+Gh, (22)

where the addendS, and G, are related to the so-called opening and slidiagtéire modes,
respectively. In particular, thepening modeor mode | corresponds to a fracture process where
the separating parts of material move away one faowther perpendicularly to the direction of
crack propagation; while thdiding mode or mode Il occurs when the separating parts undergo a
relative displacement parallel to the directiorciefck propagation.

In our model, mode | is related to the crack-tigpthcement rateg,, ands, while mode 11 is
related tor,. However, some caution is required in order taeaxily recognise the contributions
to G related to each fracture mode. If we closely exentioth Eqs. (20) and (21), it is apparent
that the terms depending @& and#,, contribute toG, only (incidentally, these terms are relevant
only if we include shear deformability in the arg$); on the other hand, the terms depending on
Nc, Mc andrn,, 17,are strongly tied one another and, hence, conéritauboth fracture modes.

The key to solve the enigma of fracture mode pariitg is to start from determining the
contributionG;;, which must be in the following form:

1 Il
G, =—N , 23
] ZB C ,7u ( )

where

NG =2 (24)

u

is the crack-tip axial force that would be ablecémcel the crack-tip sliding displacement rajg,
if no crack-tip coupleMc, were present. Remembering Egs. (11) and (12phserve thatN/! is
in general distinct fromN¢, since the latter also contributes to cangglbut they coincide if
nY =/7(’; =0. This happens, for instance, when the delaminatddaminates are uncoupled in
bending-extensiorbg = b, = 0) and such that;h; = d,h,.

By substituting Eq. (24) into (23) and (23) int@)2we finally obtain the explicit expressions
of the modal contributions to the energy release iraterms of the crack-tip displacement rates

N

n
(n,——%n,)"

1 Ui n. 1/
G =—[]—™" —+ %] = ‘u 25
| ZB[ " ,7;1 " ,7‘,(\'7) QI ZBOUN ( )
g _”N up

Expressions o5, andG,, as functions of the crack-tip forces are here wuahifor brevity.
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4 AN EXAMPLE OF APPLICATION: THE ADCB TEST

As a first example of application, we consider éisgmmetric double cantilever beam (ADCB)
test (Fig. 6), used to measure the mixed-mode Uradpbughness of composite laminates [15].
According to the global method [5], the ADCB telsbald be a case of pure mode |, however this
prediction is contradicted by all other methodsanélysis, such as the local method, the virtual
crack closure technique, the elastic-interface dbawsedels and so on, which correctly distinguish
the mixed-mode character of this test (see Rel.fiir3a detailed discussion on this topic).

'T\ P A, C, D
4 2

H, F ..... N ] .
IR c

mb—— = q

| A

" / /

‘LP Az, C2, D2 Az, Cs3, D3
a b
L

Figure 6: The asymmetric double cantilever bealERB) test.
The internal forces at the crack-tip sections ia tase are
N,=0, Q=P, M,=Psg N=0, Q=-FB M,=- Pg (26)

By assuming that the delaminated laminates are upted b, =b, =0), from Eqgs. (8) we
compute the crack-tip displacement rates,

Pa P Pa
7, :E(dlhl_dzhz)v UWZE(C1+C2)! qyzg(dl-i-dz)’ (27)
and from Egs. (11) we get the crack-tip compliances

1 1 1
’7:.\‘ :E(a1+az+d1h12+dzh§)- ’717' :’7; :E(dlhl_d2h97 ’7;2/| :_B(d +d ),

(28)
78 =1, +c).
B
Hence, Egs. (25) yield the mode | and Il contribagi to the energy release rate
2.2 _ 2 2,2 _ 2
6 =08 g vg, - BAZGp P io), 6, =P8 oo
ZB a1+a2+dlhl+d2h2 282 ZB a1+a2+dlﬁ+d2@

To confirm that the above result is correct, weagothat Egs. (29) are identical with those that
can be obtained from the elastic-interface modéhefADCB test [13] in the limit case of a rigid
interface (i.e. when the elastic constants of titerface go to infinity).
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5 CONCLUSIONS

We have presented a beam-theory based method tiiopafracture modes in planar
laminated beams affected by through-the-width dalations. According to classical laminated
beam theory, the axial, shear and bending defotitiabihave been taken into account. Moreover,
our analysis has included albending-extension couplingvhich, to our knowledge, has never
been considered before by the fracture mode manititg methods proposed in literature.

The kinematics of crack growth has been analysedefining thecrack-tip displacement rates
as the relative displacements occurring at thekctigcper unit crack extension. These quantities
appear as very helpful tools for fracture mechapicblems, since they sum up a description of
the kinematics of crack growth. In this paper, veveéhused the crack-tip displacement rates to
determine the explicit expressions of the crackfipces, energy release rate and modal
contributions. Extension to planar and spatialtelag problems looks promising.

Due to length restrictions, only one applicativeample could be presented here. A more
detailed explanation of the method and more exasnpikk be presented in an extended paper.
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