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SUMMARY. The paper presents a mechanical modehefsingle-lap joint (SLJ) test, where the
adherends are considered as shear-deformablecelastinated beams, partly connected by an
elastic-brittle interface. The problem is descriiyda set of six coupled differential equations,
which has been analytically solved, thus obtaingxglicit expressions for the internal forces,
interfacial stresses, energy release rate, and modgy angle.

1 INTRODUCTION

Adhesive joints are currently used to bond stradtatements made of composite or traditional
(metallic) materials [1]. Depending on the geometng mechanical properties of adherends and
adhesive, the ultimate load-carrying capacity ohdhesive joint is limited by several, interacting
failure modes. These include, for instance, ruptirthe adherends, failure in shear or peeling of
the adhesive, and delamination of the adherendsr(wiade of composite laminates).

Because of the relevance of the problem, many @xpetal test methods have been developed
to evaluate the effectiveness of adhesive joinkte Simplest test is probably the single-lap joint
(SLJ) test [2, 3], used to assess the shear stresfgadhesive joints. Actually, in the case of
balanced joints (i.e. when the two adherends amstichl in geometry and material), provided that
the adherends are very rigid compared to the adhefailure occurs by the cracking of the
adhesive layer under prevailing mode Il fracturedittons. In general, however, mixed-mode
fracture conditions apply [4]. Simple analytical dets of the SLJ test were developed in the
pioneering works of Volkersen [5] and Goland andsR®er [6]. A detailed literature survey on
this topic has been recently given by da Séval.[7].

The present paper is intended as a further comimibuto the study of adhesive joints in
composite structures. Following a modelling apphosicilar to that developed elsewhere for the
analysis of delamination [8], we have adopted ahaeical model of the single-lap joint test in
which two structural elements, generally differehe one from the other for thickness and
material, are bonded by a single adhesive layee fdel considers the adherends as elastic
laminated beams, partly connected by a deformaitéeface, here representing the adhesive layer.
The shear deformability of the beams, which mayrélevant for composite laminates, is
considered according to Timoshenko’s theory. Theerface is considered as a continuous
distribution of normal and tangential elastic-beitsprings, whose failure is governed by a mixed-
mode crack-growth criterion.

A set of six coupled differential equations desesilthe problem. By adopting the interfacial
stresses as principal unknowns, the original eqnadet is changed into two uncoupled higher-
order differential equations. These equations aheed analytically and explicit expressions for
the interfacial stresses and internal forces inbihreded elements are deduced. Finally, the energy
release rate and mode-mixity angle at the endseoc@tihesively bonded region are determined.

A numerical example is presented and a very fostgarison with similar models available in
the literature is carried out.
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2 FORMULATION OF THE PROBLEM

2.1Mechanical model

A scheme of the single-lap joint test is shown ig. A. The specimen is composed of two
adherends of widtB (not shown in the figure) and thicknessts= 2 h; andH, = 2 h,, generally
made of different materials, bonded by an adhdsiyer of thickness over a portion of length.
During the test, the specimen is loaded in tenbiptwo opposite forces of magnituée
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Figure 1: Scheme of the single-lap joint test.

Figure 2: Mechanical model of the SLJ test.
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In the mechanical model (Fig. 2a), the adherentisae as elastic laminated beams according
to Timoshenko's theory. We denote wity, C, and D, their extensional, shear and bending
stiffnesses, respectively (here, and in the foltmyir = 1, 2 refer to the two adherends), computed
as indicated by classical laminated plate theody The adhesive layer is represented by a
deformable interface, consisting of a continuowusritiution of elastic-brittle springs (Fig. 2b),
with elastic constantl, andk,, respectively acting along the normal and tangédirections with
respect to the interface plane. Rupture of thengpris governed by a mixed-mode crack-growth
criterion in terms of the energy release rate. §émgeric cross section along the adhesively bonded
region is specified by the abscissarwo local reference systent9;x;z; andO,x,z, are defined
with the origins on the centrelines of the adhesertcordingly, we indicate with, andw,, the
mid-plane displacements of the adherends alonguxtfe and transverse directions, respectively,
and with¢, the rotations of their cross sections, positiveoifinter-clockwise (Fig. 2b).

2.2Differential problem
The equilibrium equations for the adherends intveded portion $[0, b]) are
dN dqQ,

—=+n, =0, —~
ds ds

M, m-q=o 1)

*4 =0, ds

whereN,, Q,, andM,, are respectively the axial force, shear force, @mtling moment, and
n=-n=Br, q=-q=Bs, m=6H ) (2)
are the corresponding distributed loads and couphes
o=k Aw, T=KAuU (3)

are the normal and tangential interfacial stresBhase are proportional to the axial and transverse
relative displacements at the interfadel = u, -y and Aw=w, —w , whereu; andw; are the

displacements at the bottom surfaze=(h;) of adherend 1 and, andw, are the displacements
at the top surfacez(= —h,) of adherend 2. The axial displacements of theeatits vary linearly
with the thickness coordinate, so thgt=u +¢@h andu, =u,—@ h,, while the transverse

displacements are assumed constant throughoutittkeéss, so thaty’ =w andw, = w,. Thus,

Au=u-u-gh-gh Avw= w-w 4

The constitutive laws for the adherends can beewrias

N,=BA,,, Q=BC,y,, M,=BD,k,, (5)
where
du dw, dp
E :_a' = +—=, K :_"' 6
T ge Ve ThT s KT e (6)

are respectively the axial strain, shear straid,anvature of the adherends.
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By substituting Egs. (2), (5), and (6) into (1), g&t the set of governing differential equations,

o dw g o dg_ 1
d¢ A’ dé¢ ds C,' d§ D,
2 2

@+n D),
)

’

d¢ A’ dé¢ ds C, d§ D,

where the interfacial stressesand 7, are given by Egs. (3) and (4). The differentiadippem is
completed by the boundary conditions

PQ’ N‘Jsbzo’ qsbzo’ M]Isb: 0;

0; N2|sb: P, Q|sb= 0, lesb:_Pn;

N1|s=0 =P, Q|$O =0, M1| s0

8
N2|s:0 =0, Q2|$0 =0, M2|$O ( )

which can be expressed in terms of the displacesnenpiv, and¢,, by using Egs. (5) and (6).
3 SOLUTION STRATEGY

3.1Change of variables

Following a solution strategy similar to that offR@8], we introduce a change of variables that
simplifies strongly the analytical solution of theoblem. Namely, we adopt the interfacial stresses
as the main unknowns. To this aim, we substituts. £4) into (3) and then differentiate the
resulting expressions far and 7 with respect tcs four and three times, respectively. Thus, we
obtain a sixth-order linear homogeneous differégation for the normal interfacial stress,

d°c -~d‘c .do -~
+b +C +do=0, 9
g PaE TR ®)

where the constant coefficients are
b=k (a +a, +d,if +d,1) - k(c,+c ),

E=kk(a+a,+d,if+d,H)(c,+c )+ k(d +d ), (10)
:_K< I@[(al-"az)(dl-"d2)"'dfj2(hl+ hgz]’

o,

and a, =1/A, , c,=1/C, , and d, =1/D, denote the extensional, shear and bending

compliances of the adherends, respectively.
The tangential interfacial stress can then be pbthby integrating the following equation

E:— 1 idAa-—(C +C )ﬁ
ds d,h-d,h kds'" ' ¥ d¢

+(d,+d,) d]. (11)
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3.2Interfacial stresses
The general solution to Eq. (9) can be written as

6
o(s) =) Fexpl s), (12)
i=1
where F;, F,, ..., Fe¢ are integration constants to be determined by gimgothe boundary

conditions, andly, A, ..., Ag are the roots of the characteristic equation,
AS+DA + A2+ d=0. (13)

By substituting Eq. (12) into (11) and integratinge obtain the general solution for the
tangential stress,

7(s)=-

dh - d h {Zal i CRCAZEICH +d2)—]exp(/\ 9+ E}, (14)

whereF; is another constant.

3.3Integration constants

The internal forces can now be deduced by substifuhe expressions for the interfacial
stresses (12) and (14) into Egs. (2) and (1), ategjiating the latter with respectdoThis process
yields the analytical expressions for the intefoates, where six new integration constaRts Fo,

., F13, appear. In turn, the expressions for the intefmiades are substituted into the constitutive
laws (5). Then, by using Egs. (6) and integratinth wespect tcs, the analytical expressions for
the displacements are also deduced. These invidvase constants; 4, Fis, ..., Fio.

To sum up, there are 19 integration constants welermined, but the boundary conditions (8)
appear insufficient because they consist of only etfiations. Actually, by introducing the
obtained expressions for the interfacial stressab @displacements into Egs. (3), we find 7
relations between the constants, only 12 of which but to be independent of each other. So, by
imposing boundary conditions (8), we find the valud all the integration constants, except for
F14, F16, andF1g, which represent a rigid displacement of the wisylgtem.
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In particular, the first six constants are obtaibgdolving a linear equation set,

Zf:(/]k_lz_ c,—c,) f =dh,

$heo

ZG:L _ _(a'_l_d2+a2d1)h2_ap (h,—hy)+dd ﬁz( hi+ h)

=0 (8 +a,)(d,+d;)+dd (h,+h)* (15)
26:(/'](_3_(:1+C2)6Xp@ib)fi =d,h,

32000 o

ZG:eXp(/] b) __(a1d2+a2dl)hl+a2d 2(h1_ h2)+dp 2hzl( h1+ h)

=R = (a +a,)(d; +d,) +dd (h,+ h)* '

where f, =F B/P, i=12,...,€

3.4Internal forces
Based on the above results, we deduce the expnedsiothe internal forces in the adherends:

: /]l2 _ d 2
o, rd)rdd g hy | G TG Jerds)
N(9=P + P , (16)
(a, +a,)(d,+d,)+dd (h+h)? d;h —d,h,
N,(s) = P- N(9,
for the axial forces;
Q(s) ——Pz—exp(/l s, Q(9=- Q3 (17)

_1|

for the shear forces; and lastly,

d (m h,)
§ f[( —C, —Cy)h + =2 —=exp(4 s)
_ (a1hl_a2h2)dz i=1
M,(s)=-P + P

(&, +a,)(d, +d,)+dd (h+h)? d,h-d h
M,(s) =-M,(9+ N($ h— N( 5 b

,(18)

for the bending moments. Likewise, explicit express for the displacements can be obtained.
For simplicity, we omit here those results, whicli e presented in an extended paper.
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3.5Energy release rate, crack-tip interfacial stressssd mode mixity

Failure of a real adhesive joint can occur as aequence of several different failure modes.
Here, we focus on the failure due to the crackihthe adhesive layer. In this case, crack growth
can initiate at either of the two sectio®sandB, at the ends of the bonded region, where the
interfacial stresses attain peak values,

P& P&
G'A_0'|S:0:Eiz:1:fi, o, :J|S=b:E;fi exp@b),
ngi/‘i (Cl+Cz‘/k]i22) PiZ::fi/li (Cl+cz—/E)exp(4b) (19)
Bl BT anodn T e TR d,h-d,h
Accordingly, the energy release rates at the twerg@l crack tips are
G,=G,, + G, and G=G, +G, (20)
where
G, :;T—k’iz, Gui :% and G, :;T—EZ v Gy :;—i , (21)

are the respective contributions of modes | artd the energy release rate. Finally, we obtain the
mode-mixity angles at the two endpoints,

= arctan Can and = arcta o (22)
aZEEE G, Voo oG,

from which the critical values of the energy rekeaste,

GCpe =Gy and Gy =G {s) (23)

can be computed according to some chosen mixed-mi@d&-growth criterion [4], suitable for
the adhesive under examination.

4 NUMERICAL EXAMPLE

By way of illustration, we apply the proposed motdethe case of a balanced (symmetric) SLJ
already considered for comparison purposes by ada®$ét al. [10]. The adherends have width
B = 25 mm and thickneds; = H, = 2 mm. The adhesive layer has length 50 mm and thickness
t =1 mm. The elastic moduli of the adherends (lassumed isotropic) aie, = E, = 106.3 GPa,
G1 =G, = 40.0 GPa, the moduli of the adhesive Bye 4.44 GPa ant, = 1.64 GPa. Hence, the
stiffnesses of the adherends turn out to be thlwiolg: A; =E; H; = 212600 N/mm (FA,),
C,=5G; H, /6 = 66604 N/mm (€,), D, = E; H,;®/ 12 = 70867 N mm (©,).

As far as the elastic constants of the interfagecancerned, similar models available in the
literature consider these constants to be functadrtbe elastic moduli of the adhesive. Here, in
order to account also for the localised deformatimeurring at the crack-tip, which may be
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particularly relevant for composite, orthotropicteréals, we set
1 N

1 N
= =1519.4 and Kk =— = 4097.74——. 24
TR n — THLtLh e @Y
Gl Ga GZ El Ea EZ

Fig. 3 shows the internal forces in the upper (ootus, red curves) and lower (dashed, blue

curves) adherends as functions of the abscsssss given by Eqgs. (16)—(18) for an applied load
P =5 kN. In particular, Fig. 3a shows the axialcks,N; andN,, Fig. 3b represents the shear

forces,Q; andQ,, and Fig. 3c shows the bending momeltsandM,. In this case, the symmetry
of the specimen is reflected into the symmetryhefplots of the internal forces.
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Figure 3: Internal forces in the adherends.

Fig. 4 shows the normal and tangential interfasiedssesg and 7, as given by Egs. (12) and
(14), respectively, as functions of the abscissBpth stress components attain peak values at the
ends of the adhesively bonded region. The peaksstralues obtained by the present model are
compared in Table 1 with the corresponding valueslipted by the models of Refs. [10] and [11].
A very good agreement is found for the peak tangkestress, while higher discrepancies emerge

for the normal stress.
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Figure 4: Normal and tangential interfacial stesss
Table 1: Peak values of the interfacial stresseRBgM
Stress component  Present model, Egs. (H#@s Nevegt al.[10] Frostiget al.[11]
Op = Oy 34.0 15.0 40.0
In= T3 23.9 24.0 23.0

Correspondingly, we compute the mode | and Il dbations to the energy release rate,

G, =G, :141.1i2 and G,, =G, = 188.2%, (25)
’ ' m ’ ' m
and the mode-mixity angle,
Yo =y =49.1, (26)

which show, at least in this case, that the couatidim from mode | fracture is not negligible at all

Lastly, as a first step towards the analysis ofalericed SLJ specimens, in Fig. 5 we show the
effect on the axial forcd&l; of varying the ration = Hy/H,, while keeping constant the overall
thicknessH; + H,.
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Figure 5: Axial force in the upper adherend fobalanced (asymmetric) SLJ specimens.



XIX Congresso AIMETA Sessione SO-07
Ancona, 14-17 settembre 2009 Frattura

5 CONCLUSIONS

We have presented a mechanical model of the slaglgint (SLJ) test, suitable for balanced
and unbalanced joints. The model considers theradtie as shear-deformable elastic laminated
beams, partly connected by an elastic-brittle fatss.

A complete explicit solution of the problem has mesbtained for the internal forces and
interfacial stresses. Hence, explicit expressiartlie energy release rate and mode mixity angle
have also been deduced. The solution enables igatry the role of the relevant mechanical
parameters, such as the dimensions of the spectimethicknesses and mechanical properties of
the adherends and adhesive.

From the first carried out comparisons, a good ement has been found between the
theoretical predictions of our model and similaesmproposed in the literature. However, further
work is necessary to allow the model to take irtooaint some important aspects of the behaviour
of real adhesive joints such as, for instance, wiseous and elastic-plastic behaviour of the
adhesive, the geometrical non-linearity, due tgdatisplacements, and the interaction of several
failure modes. It is likely that the above improvents will require the use of numerical solution
methods, for which the developed analytical sotutidll hopefully serve as a reliable basis.
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