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SUMMARY: The paper presents an enhanced model of the mixed-mode bending (MMB) test, 

commonly used for assessing the mixed-mode interlaminar fracture toughness of composite laminates. 

The specimen is considered as an assemblage of two identical sublaminates, partly bonded together by 

an elastic interface. Each sublaminate is modelled as an orthotropic beam, deformable due to bending, 

extension and shear. The interface is thought of as a continuous distribution of normal and tangential 

springs, whose elastic reactions produce transverse and axial loads in the sublaminates, as well as 

distributed couples. The mechanical behaviour of the system is described by a set of eighteen 

differential equations, endowed with suitable boundary conditions. The problem is split into the 

superposition of two subproblems, where the applied loads are symmetric and antisymmetric with 

respect to the interface plane, respectively. This approach allows for a simpler analytical solution and 

leads to a natural separation of the fracture modes within the context of beam theory. Through lengthy 

yet elementary calculations, a complete explicit solution to the original problem is deduced, in terms of 

displacements, internal forces and interfacial stresses. In particular, the mode I and II contributions to 

the energy release rate and the mode mixity ratio are determined. 

 

1 INTRODUCTION 

The separation between the laminae that make up a fibre-reinforced composite laminate, 

commonly known as delamination, is a major failure mode for this class of materials. Similar 

decohesion phenomena are observed in thin films, glued joints, sandwich panels, laminated wood, 

layered glass, and other layered materials in all fields of technology. A huge literature is available on 

this subject (for a first review, see [Garg, 1988; Sela and Ishai, 1989; Tay, 2003]). 

The phenomenon of delamination can be analysed within the framework of Fracture Mechanics, 

where a delamination is properly regarded as an interlaminar fracture [Friedrich, 1989]. Under general 

service conditions, the growth of an interlaminar fracture in a composite laminate involves 

simultaneously the three modes of crack propagation: opening (I), sliding (II), and tearing (III). 

Experimental evidence shows that fracture toughness strongly depends on which propagation mode is 

active, or prevailing. Therefore, specific laboratory tests have been developed for assessing 

interlaminar toughness in each fracture mode [Adams et al., 2003]. The double cantilever beam (DCB) 

test is the standard test for pure mode I, while the end notched flexure (ENF) test is commonly used for 

pure mode II. Also many mixed-mode tests have been proposed, where the delamination propagates 

under a (prescribed) mix of the modes I and II. Amongst the latter, the mixed-mode bending (MMB) 

test, introduced by Reeder and Crews [Reeder and Crews, 1990], is probably the most widely used one, 

and has recently become a standard in the USA [ASTM, 2006]. 
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The MMB test is basically a bending test carried out on a (unidirectional) laminated specimen 

endowed at one of its ends with a pre-implanted delamination, splitting the specimen into two 

sublaminates of equal thickness (fig. 1). The specimen is loaded through a rigid lever, which divides 

the applied load, P, between a downward load, Pd, and an upward load, Pu. The length of the lever arm, 

c, can be adjusted in order to vary the ratio du PP /  and, consequently, the ratio between the fracture 

modes I and II. Within the context of Simple Beam Theory (SBT), the MMB test can be modelled 

through the superposition of the models developed for the DCB and ENF tests, separately. In 

particular, the energy release rate, G, can be obtained as the sum of a mode I contribution, GI, 

corresponding to the DCB, and a mode II contribution, GII, corresponding to the ENF. However, the 

SBT model suffers from some oversimplifying assumptions that lead to a poor matching with 

experimental results. A better description is obtained by the Timoshenko Beam Theory (TBT) model, 

which accounts also for shear deformability, or by more complex models [Kinloch et al., 1993; Allix 

and Corigliano, 1996; Massabò and Cox, 2001; Szekrényes and Uj, 2006]. 

 

 
Figure 1 – The mixed-mode bending test. 

 

This paper presents an Enhanced Beam Model (EBM) of the MMB test, where the laminated 

specimen is considered as an assemblage of two sublaminates, of equal thickness, partly bonded 

together by an interlaminar interface. This approach generalises an idea by [Kanninen, 1973], 

developed later by many Authors [Allix and Ladevèze, 1992; Corigliano, 1993; Point and Sacco, 1996; 

Bruno and Greco, 2001]. Although the model is based on a beam theory approach, a number of 

significant enhancements are introduced. Each sublaminate is modelled as a flexible orthotropic beam. 

Moreover, the deformations due to both shear and axial forces are taken into account. The interface is 

thought of as a continuous distribution of linear elastic springs, acting in both the normal and tangential 

directions with respect to the interface plane. The elastic reactions are proportional to the relative 

displacements between the points located at the bottom surface of the upper sublaminate and the upper 
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surface of the lower sublaminate. These reactions correspond to the normal and tangential interlaminar 

stresses, σz and τzx, which produce transverse and axial distributed loads on the sublaminates, 

respectively. Moreover, since there is an offset between the interface plane and the axes of the 

sublaminates, the tangential stresses produce also distributed couples, which are properly considered in 

the model. 

The mechanical behaviour of the system is described by a set of eighteen differential equations, 

endowed with suitable boundary conditions. In order to simplify the analytical solution, the problem is 

split into the superposition of two subproblems corresponding to the symmetric and antisymmetric 

parts of the applied loads, respectively. Since the two sublaminates are identical in geometry and 

mechanical properties, it can be shown that in the symmetric problem the tangential interlaminar 

stresses vanish and so do the normal interlaminar stresses in the antisymmetric problem. Thus, this 

superposition scheme leads to the separation of fracture modes I and II. It is noteworthy that this result 

is obtained here within the natural context of the model (i.e. Beam Theory), without a somehow 

artificial exploitation of results coming from different theoretical settings [Wang and Qiao, 2006], such 

as Elasticity Theory [Suo and Hutchinson, 1990]. Finally, through lengthy but elementary calculations, 

whose details can be found in a forthcoming paper [Bennati et al.], a complete explicit solution to the 

stated differential problem is deduced. The analytic expressions of the displacement components, 

internal forces and interfacial stresses are obtained. In particular, the mode I and II contributions to the 

energy release rate and mode mixity are determined. Finally, useful correction factors, to be applied to 

the SBT expressions, are obtained. 

 

 
Figure 2 – The enhanced beam model of the MMB test, with a detail of the elastic interface. 
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2 THE MODEL 

2.1 Formulation of the problem 

The model is schematically represented in figure 2. A rectangular coordinate system Oxyz is fixed with 

the origin O at the delaminated end of the specimen, the x-axis parallel to its axial direction and the z-

axis pointing downwards. Let L, B, and 2h be the length, the width and the thickness of the specimen, 

respectively; let a be the delamination length. Let ui and wi denote the mid-plane displacements of the 

sublaminates along the x and z-axes, respectively, and let φi be the (counter-clockwise) cross-sectional 

rotations (the subscript i assumes the values 1 or 2 to refer, respectively, to the upper and lower 

sublaminates). Let Ex, Ey and Gxy be the elasticity moduli of the laminate in its material reference, 

whose axes are parallel to the fixed reference. Hence, let / 2i xh= =A E A , 5 / 6 / 2i xyh= =C G C , and 

3 /12 /8i xh= =D E D  be, respectively, the extensional, shearing and bending stiffnesses of the 

sublaminates. These are related to the corresponding properties of the integer laminate, A, C, and D. 

On the upper sublaminate, an upward load, Pu, acts at the abscissa x = 0, and a downward load, Pd, acts 

at the abscissa bx =  (normally, 2/Lb = ). The lower sublaminate is simply supported at its ends. 

The equilibrium equations for the two sublaminates are 

0, 0, 0, 1, 2,i i i

i i i i

dN dQ dM
n q m Q i

dx dx dx
+ = + = + − = =  (1) 

where Ni, Qi, and Mi are, respectively, the axial force, the shear force and the bending moment, and 

1 2

0,  [0, [

, [ , ]zx

x a
n n

B x a Lτ
∈

= − =  ∈
, 

1 2

0, [0, [

, [ , ]z

x a
q q

B x a Lσ
∈

= − = 
∈

, 
1 2

0, [0, [

,  [ , ]
2

zx

x a

m m h
B x a Lτ

∈


= = 
∈

 (2) 

are the corresponding distributed loads, related to the tangential and normal interfacial stresses, 

,zx x z zk u k wτ σ= ∆ = ∆ , (3) 

which, in turn, through the elastic constants, kx and kz, are proportional to the axial and transverse 

relative displacements at the interface (of thickness t h≪ ), 

2 1 1 2 2 1( ),
2

h
u u u w w wφ φ∆ = − − + ∆ = − , (4) 

evaluated between the bottom and top surface of the upper and lower sublaminates, respectively. 

The constitutive laws for the sublaminates can be written as follows 

, , ,  1, 2,i i i i i i i i iN B Q B M B iε γ κ= = = =A C D  (5) 
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where 

, , ,  1, 2,i i i

i i i i

du dw d
i

dx dx dx

φ
ε γ φ κ= = + = =  (6) 

are, respectively, the axial strain, the shear angle and the curvature of the sublaminates. 

By introducing eqns. (2) through (6) in (1), after some simplifications, here omitted for the sake of 

brevity, we obtain the set of differential equations that govern the problem, 

2 2 2

2 2 2

4
0, 0, ( ) 0,  1, 2,i i i i i

i

d u d w d d dw
i

dx dxdx dx dx

φ φ
φ= + = − + = =

C

D
 (7a) 

for [0, ]x a∈ , and 

2 2

1 2

2 2

2 2

2 1

2 1 1 22 2

2 2

1 2 1 2

2 2

2 2

2 1 2 1

2 12 2

2 2 2 2

1 2 1 2 2 1

1 22 2 2 2

2

2

2

,0

4
[ ( )] 0,

2

0,

4
( ) 0,

4 2
( ) ( ) 0,

x

z

d u d u

dx dx

kd u d u h
u u

dx dx

d d d w d w

dx dx dx dx

d d d w d w k
w w

dx dx dx dx

d d dw dw d u d uh

dx dxdx dx dx dx

d

dx

φ φ

φ φ

φ φ

φ φ
φ φ

φ

+ =

− − − − + =

+ + + =

− + − − − =

+ − + + + + − =

A

C

C A

D D

2

1 2 1
2 12

4
( ) 0,

d dw dw

dx dxdx

φ
φ φ− − − + − =

C

D

 (7b) 

for ],[ bax∈  and ],[ Lbx∈ . The differential problem is completed by boundary conditions describing 

the restraints at 0x =  and x L= , as well as the (dis)continuity of the solution at x a=  and bx = . 

Their expressions are here omitted for the sake of brevity (see [Bennati et al.]). 

 

2.2 Solution strategy and fracture mode separation 

The differential problem to be solved, in terms of the generalised displacements, is composed by 18 

equations: eqns. (7a) are in number of 3 (for the upper sublaminate) + 3 (for the lower sublaminate); 

eqns. (7b) are in number of 6 (for ],[ bax∈ ) + 6 (for ],[ Lbx∈ ). The solution of eqns. (7a) is 

straightforward; instead, the solution of eqns. (7b) is more involved. In what follows only a sketch of 

the solution strategy is presented, and the details are postponed to a forthcoming paper [Bennati et al.]. 
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Figure 3 – Symmetric and antisymmetric load systems. 

 

In order to simplify the solution of eqns. (7b), it is convenient to split the original problem into the 

sum of two subproblems, (s) and (a), where the symmetric and antisymmetric parts of the loads are 

applied, respectively (fig. 3). Thus, the sought solution can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )
, , , 1, 2.

s a s a s a

i i i i i i i i iu u u w w w iφ φ φ= + = + = + =  (8) 

Since the two sublaminates are identical, as far as geometry and mechanical properties are 

concerned, the solutions must satisfy the same (anti)symmetries, namely 

( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2, , ,
s s s s s s

u u w w φ φ= = − = −  (9a) 

and 

( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2, , .a a a a a au u w w φ φ= − = =  (9b) 
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By substituting eqns. (8) and (9) into (3) and (4), it is immediately seen that 

( ) ( ) ( ) ( )
0 0, and 0 0.

s s a a

zx zu wτ σ∆ = ⇒ = ∆ = ⇒ =  (10) 

It is thus demonstrated that the symmetric load system only produces normal interfacial stresses, so 

it is related to pure mode I fracture (opening); conversely, the antisymmetric load system is responsible 

only for tangential interfacial stresses, so it corresponds to pure mode II fracture (sliding). 

 

2.3 Explicit expressions of the solution 

The explicit expressions for the generalised displacements, as well as for the internal forces in the 

upper and lower sublaminates have been obtained [Bennati et al.]. 

In particular, the normal and tangential interlaminar stresses at the elastic interface are 

1 1 2 1 3 2 4 2

1 1 2 1 3 2 4 2

3 3

1 1 2 1

2 2

1 2

[ cosh ( ) sinh ( ) cosh ( ) sinh ( )], [ , [

[ cosh ( ) sinh ( ) cosh ( ) sinh ( )]

sinh ( ) cosh ( )
, [ , ]

2

z

z
z

d

k x a x a x a x a x a b

k x a x a x a x a

P x b x b
x b L

B

β λ β λ β λ β λ

β λ β λ β λ β λσ
λ λ λ λ

λ λ

− + − + − + − ∈

 − + − + − + − += 
 − − −

+ ∈
−

 

5 5
5 52

5 5

5
5 52

5

cosh ( ) sinh ( )
{(1 ) [1 ] cosh ( )}, [ , [

sinh ( ) sinh ( )

cosh ( )
{ [ (1 ) sinh ( )] }, [ , ]

sinh ( )

d

zx

d

P L x L bh b
a L x x a b

B L L a L ah

P L xh b b
a b a x b L

B L L L ah

λ λ
λ λ

λ λ
τ

λ
λ λ

λ

− −
− + − − ∈ − −+

= 
−− − − + − ∈ −+

A

D A

A

D A

 

 (11) 

where 

1 2 5

2 24 4 1
(1 1 ) , (1 1 ) , 2 ( )z z

x

z z

k k h
k

k k
λ λ λ= + − = − − = +

2 2 2
C C

C D C D A D
 (12) 

are constants related to the roots of the characteristic equations of the differential equations (7b), and 

β1, β2, β3, and β4 are constants depending on the loads, Pu and Pd. Their explicit expressions, obtained 

by imposing the boundary conditions, are rather lengthy and can be found in [Bennati et al.]. 

Due to the presence of the elastic interface, the modal contributions to the energy release rate are 

2 21 1
[ ( )] , [ ( )] .

2 2
I z II xG k w a G k u a= ∆ = ∆  (13) 
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or, more concisely, 

, ,SBT SBT

I I I II II IIG G G Gµ µ= =  (14) 

where 

2 2 2 2

2 2

8 3
, ,

8

SBT SBTI II
I II

P a P a
G G

B B
= =

D D
 (15) 

are the mode I and II energy release rates, computed according to the Simple Beam Theory (where 

fracture mode separation is obtained by letting (1 / ) / 2I u dP P b L P= − −  and 2(1 / )II dP b L P= − ), and 

2 2 2
21 2 1 2 1 2 1 2 1 2 2 1 1 2

2 2

1 2 1 2 1 2 1 2

( ) (1 1/ ) ( )( ) /
[1 ] ,

( ) 2 (1 1/ )
I

C C TT T T a

TT C C

λ λ λ λ λ λ λ λ
µ

λ λ λ λ
+ − − + − −

= +
+ − −

 

25
5

5 5

sinh ( )1 1
{coth ( ) [1 ]} ,

1 / sinh ( )
II

L b
L a

a b L L a

λ
µ λ

λ λ
−

= − + −
− −

 (16) 

are modal correction factors. In (16) we have set cosh ( )j jC L aλ= − , tanh ( )j jT L aλ= − , 1, 2j = . 

 

3 APPLICATION 

For the sake of illustration, we consider the case of a 24-ply graphite/PEEK unidirectional laminate 

having the following geometric and mechanic properties [Reeder and Crews, 1990] 

 

L = 100 mm, B = 25 mm, 2h = 3.1 mm, 

Ex = 116000 N/mm
2
, Ey = Ez = 10100 N/mm

2
, Gxy = Gzx = 5500 N/mm

2
. 

 

The delamination length, a, ranges from 25 to 45 mm. The applied load is N 100=P . The 

downward load is placed at the mid-span, so 2/Lb = . The lever arm, c, is 44 mm, which, according to 

the Simple Beam Theory, corresponds to a mode mixity ratio, / 1SBT SBT

I IIG GΨ = = . 

Figures 4a and 4b show the mode I and II energy release rates, GI and GII, as functions of the 

delamination length, a. Here and in the following, the (red) dashed curves refer to the Simple Beam 

Theory model (SBT), the (black) dash-dot curves to the Timoshenko Beam Theory model (TBT) and 

the (blue) continuous curves refer to our Enhanced Beam Model (EBM). Three orders of magnitude for 

the elastic interface constants, kx and kz, are used: 10
3
, 10

4
, and 10

5
 N/mm

3
. 

With reference to figure 4a, we notice that the SBT and TBT models predict nearly coincident 

values for the mode I energy release rate, GI
SBT

 and GI
TBT

. Instead, the values predicted by our model 

appear to be quite higher. The difference between the GI of the EBM and GI
SBT

 diminishes as the 

normal elastic constant, kz, increases. It is noteworthy that, for kz approaching infinity, the predictions 

of the EBM reach a limit value which is different from the simpler models. This is a consequence of the 
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higher deformability of the proposed model with respect to models where the integer part of the 

specimen is modelled as a monolithic beam. Actually, it can be shown that, since we consider the shear 

deformability of beams, even in the limit case of a rigid interface, the upper and lower sublaminates 

maintain the possibility of different cross-sectional rotations under symmetric (mode I) load conditions. 

This is not the case when antisymmetric (mode II) load conditions are considered (fig. 4b). As the 

tangential elastic constant, kx, approaches infinity, the GII of the EBM tends towards GII
SBT

. A careful 

reader would surely notice that the curve representing the TBT is missing from the plot of the mode II 

energy release rate. This is not a misprint! Though different statements can be found in the literature, 

for mode II, the TBT yields identical predictions to the SBT. In fact, the shear deformability of the 

beams should not influence the mode II fracture propagation (for a deeper discussion see [Valvo]). 

 

 
a) 

 
b) 

Figure 4 – Mode I (a) and Mode II (b) energy release rates vs. delamination length. 

 

 
a) 

 
b) 

Figure 5 – Energy release rate (a) and Mode I/II energy release rate ratio (b) vs. delamination length. 

kz 
kx 

kx, kz 

kx, kz 
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Figure 5a shows the total energy release rate, III GGG += , as a function of the delamination 

length, a. As the elastic constants, kz and kx, increase, the energy release rate gets closer to the curves 

representing the SBT and TBT models. The limit value in the case of a rigid interface, however, is 

greater than the predictions of the simpler models, because of the influence of the shear deformability 

on the GI contribution. 

Figure 5b represents the mode mixity ratio, III GG / , as a function of the delamination length, a. 

Differing from the SBT, the EBM yields a non-constant mode mixity ratio and shows a significant 

scatter also with reference to the TBT. The difference with the simpler models becomes smaller as the 

elastic constants increase. 

Figure 6a and 6b show in semi-logarithmic scale the mode I and II correction factors, µI and µII, as 

functions of the elastic constants, kz and kx, respectively. In both cases, as the elastic constant goes to 

infinity, the curves reach a horizontal asymptote. For mode II, the limit value of the correction factor is 

one (fig. 6b); for mode I, the limit value depends on the shear stiffness, C, and approaches unity only 

when also the shear stiffness tends to infinity (fig. 6a). 

 

 
a) 

 
b) 

Figure 6 – Mode I (a) and Mode II (b) correction factors vs. elastic constants. 

 

4 CONCLUSIONS 

An enhanced beam model of the mixed-mode bending test has been developed. The main improvement 

with respect to other models available in the literature stems from the introduction of an elastic 

interface, which produces distributed loads and couples on the sublaminates. These ones have been 

modelled as elastic beams, taking into account the bending, axial and shear deformability. A complete 

analytical solution has been determined, in particular for the interlaminar stresses and the mode I and II 

contributions to the energy release rate. 

C 



Atti del XVIII Congresso dell’Associazione italiana di meccanica teorica e applicata 

 11 

The example shown above has highlighted a significant dependence of the predictions of the EBM 

on the values of the interfacial elastic constants. As a first attempt, we can define these ones as 

, ,zx z
x z

x z

k k
t t

= =
G E

 (17) 

where tx and tz are characteristic lengths, depending on the thickness of the sublaminates, related to the 

size of the fracture process zone. 

 

 
a) 

 
b) 

Figure 7 – Energy release rate vs. delamination length for various mode mixity ratios. 

 

Figures 7a and 7b are obtained by setting tx = h / 10, and tz = h. The plots show the total energy 

release rate, G, and the mode mixity ratio, GI / GII, as functions of the delamination length, a. Three 

values of the lever arm, c, are used: 28, 44 and 108 mm. According to the Simple Beam Theory, the 

corresponding ratios, 
SBT

II

SBT

I GG /=Ψ , are 1/4, 1/1, and 4/1, respectively. 

As a concluding remark, we observe that the values of the interfacial elastic constants could be 

assigned in order to match the experimental results or the predictions of numerical models of the MMB 

test. Nevertheless, if the proposed model is supposed to furnish a prediction of the MMB test results, 

and not only an a posteriori description of these ones, the values of the constants should be fixed 

according to a micro/meso-mechanical model, supported by ad hoc experimental tests. The matter is 

surely worth further investigation. 
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