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ABSTRACT 

The paper presents a mechanical model for describing the phenomenon of mixed-mode buckling-driven decohesion of a thin 
superficial layer from an underlying substrate loaded in compression. The superficial layer is schematised as a film partly 
bonded to the substrate by means of an elastic interface, in turn, represented by a continuous distribution of linear elastic 
springs placed both normally and tangentially to the interface plane. The nonlinear equilibrium problem is solved explicitly, so 
that the buckling stress is determined together with the complete structural response in the pre- and post-critical phases. In 
particular, the normal and tangential interfacial stresses are determined, from which the mode-I and mode-II components of 
the strain energy release rate and the mode-mixity angle are derived. Finally, a mixed-mode crack-growth criterion is applied 
and different types of possible crack growth predicted by the model are discussed. 

Introduction 

The detachment of a thin superficial layer from an underlying substrate due to the combined action of local buckling and 
fracture propagation is a damage mode common to many technological applications and natural situations. For instance, 
delamination is one of the most insidious attempts on the integrity and the mechanical performances of fibre-reinforced 
laminated composites [1-2]. An analogous phenomenon is the detachment of a skin from the core of a sandwich plate [3]. 
Furthermore, the decohesion of a thin film from a substrate is commonly observed in metal elements covered by protective 
coatings and in microelectronic components, but also in biological structures and so on [4-7]. The essence of the phenomenon 
is as follows. When the superficial layer is loaded in compression (because of applied loads, thermal mismatch, etc.), the 
regions where bonding is weak or missing may undergo local buckling. As a consequence, high stresses arise at the contour 
of the debonded region, thus promoting its further expansion. 
As the literature on the subject is very extensive, only a few references can be given here. The first mechanical models, 
relative to plane-strain problems, were proposed by Kachanov [8] and Chai et al. [9]. Thereafter, many theoretical and 
experimental studies have been carried out and a number of cases analysed. Despite this great research effort over the last 
twenty-five years, delamination buckling is still a current research topic and many questions, such as crack nucleation, fibre 
bridging, anisotropy, interface modelling, fatigue growth, mixed-mode growth, and so on, warrant further in-depth investigation. 
In a buckling-driven decohesion process, the instability and fracture phenomena are closely related and take place 
simultaneously. However, the prevailing approach in the literature is to analyse these two aspects separately: firstly, the 
nonlinear equilibrium problem is solved, in the framework of elasticity theory [10] or by structural theories [11]; secondly, a 
crack-growth criterion is applied. To this aim, local parameters describing the singularity of the stress field at the crack front, 
such as the stress-intensity factors, kI, kII, and kIII, related to the three modes of crack growth (I or opening, II or sliding, and III 
or tearing) can be evaluated directly when the post-critical solution is found via elasticity theory [12]. Instead, when a structural 
model is used, they can be estimated a posteriori from the computed solution [13]. A simpler approach is to consider a global 
parameter, such as the energy release rate, G, for predicting crack growth [14-15]. However, as it was soon recognised for 
both composites and general layered materials [16-17], experimental values of the fracture toughness are much greater for 
mode-II an III tests than for mode I. As a consequence, since in general the process of delamination buckling involves a mix of 
the three modes, any successful attempt to model the phenomenon should take into account a method for evaluating the 
mode-mixity, i.e. the relative amount of the growth modes, and a mixed-mode growth criterion should be adopted [18-19]. 
A more detailed description of the process of layer separation can be achieved through the theory of interfaces [20-21], which 
can be included within the framework of a structural model in order to gain information about the stress components acting 
between the separating layers. The simplest interface that can be imagined is probably a continuous distribution of linear 
elastic springs [22-23]. The Authors of the present paper have proposed elsewhere [24-25] a model for describing 
delamination buckling and growth in composite laminated plates loaded in compression, where a delaminated plate is 
modelled as the union of two sublaminates of finite thickness, partly bonded together by an elastic interface. The sublaminates 
are modelled according to von Kármán’s plate theory. The interface is schematised as a continuous distribution of linear elastic 
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springs acting in both the normal and tangential directions with respect to the interface plane. In the simpler case of a through-
the-width delamination, explicit expressions were determined for the solution of the equilibrium problem in both the pre- and 
post-critical phases. Moreover, the normal and tangential interlaminar stresses exerted between the sublaminates at the 
delamination front were deduced, so that the mode-mixity angle could be obtained explicitly and a mixed-mode growth criterion 
could be applied. Recently, the above model has been extended to include delamination growth under cyclic compression [26]. 
The present paper considers a superficial layer as a thin film partly bonded to an infinite substrate by means of an elastic 
interface made of normal and tangential springs. The above delaminated plate model is here suitably modified to consider a 
film of infinite length over a substrate of infinite thickness. Accordingly, new explicit expressions are determined for the solution 
of the equilibrium problem, in particular for the displacements of the film and the interface stresses. Hence, the strain energy 
release rate is determined, together with its modal components, by means of the virtual crack closure technique. Finally, the 
mode-mixity angle is determined as a function of the applied stress and the size of the debonded region. 
The results obtained are able to predict some experimentally observed features, such as the arrest of the crack growth due to 
the predominance of mode II over mode I, as the load grows higher and the debonded region extends [27]. Moreover, the 
model confirms some recent results concerning stiff films on compliant substrates [28-29]. 

Formulation of the problem 

We consider the plane-strain problem of a thin film of thickness Hf, bonded to a substrate of infinite extent, except for a portion 
of length 2a. A rectangular coordinate system OXZ is fixed with the origin at the centre of the debonded region, the X-axis and 
the Z-axis parallel and normal to the external surface, respectively (Fig. 1). 
Both the film and the substrate are assumed to behave as linearly elastic solids. Let Ef and νf be the Young modulus and the 
Poisson ratio of the film, respectively. Let Es and νs be those of the substrate. Since we consider a plane-strain problem, it is 

convenient to introduce the reduced moduli, )1/( 2
fff EE ν−=  and )1/( 2

sss EE ν−= . 

The bonded parts of the film are connected to the underlying substrate by means of an elastic interface, supposed without 
thickness and modelled as a continuous distribution of linearly elastic springs placed in both the X and Z directions, 
characterised by the spring constants kX and kZ, respectively. 
A compressive strain, εA, acting along the X-axis, is prescribed far away from the debonded region. Consequently, at infinite 

distance, the film and the substrate are subjected to the compressive stresses Aff E εσ =∞  and Ass E εσ =∞ . 
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Figure 1. Thin film bonded to a substrate through an elastic interface. 
 

We denote with u and w the displacements along the X-axis and the Z-axis, respectively. The subscripts f and s will refer to the 
film and to the substrate. Under the above assumptions, the differential equations of the equilibrium problem are obtained from 
von Kármán’s plate theory for the debonded film, 
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and from Kirchhoff’s classical plate theory for the bonded film, 
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and for the substrate (supposed rigid in bending), 
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In the above expressions, σf and σs are the axial stresses in the debonded film and in the substrate, respectively, and the 
following auxiliary constants have been introduced 
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The differential problem is completed by proper boundary conditions, whose expressions are here omitted for brevity’s sake. 

Delamination buckling 

The stated equilibrium problem can be solved explicitly [24]. Leaving out the details of the calculation, we limit ourselves to 
presenting here the main results. 
The stress in the film at which local buckling occurs, σB, is obtained by solving for λ the equation 
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So, the transverse displacement of the film in the post-critical phase is 
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is the amplitude of the sinusoid representing the transverse displacement of the debonded film. This amplitude is zero 
throughout the pre-critical phase, and becomes an increasing function of the applied stress only after buckling has occurred. 
Further, the axial displacement of the film, 
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and the axial displacement of the substrate, 
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are deduced. Finally, the normal and tangential interfacial stresses can be computed 
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Delamination growth 

Griffith’s classical criterion assumes that crack growth occurs when the energy release rate, G = – ∂Π / ∂a (where Π is the total 
potential energy of the system) reaches a critical value, GC. In its original and simplest formulation, GC is a material constant to 
be determined by experiment. Nevertheless, for layered materials, experimental determinations of GC are markedly dependent 
on which propagation mode (I or opening, II or sliding, III or tearing) is active in the test performed. Actually, values measured 
in pure mode-III tests, GIII C, are usually greater than those obtained in pure mode-II tests, GII C, which, in turn, are much 
greater than the values measured in pure mode-I tests, GI C. Under mixed-mode conditions, an intermediate value of GC is 
expected, depending on which mode prevails. In these cases, in order to predict crack growth, a mixed-mode criterion must be 
adopted. This criterion can still be expressed by G = GC, provided that GC is considered a function of the relative amount of the 
different propagation modes instead of a constant. For plane problems involving the decohesion of a thin film from a substrate, 
the critical energy release rate can be defined as [17-18] 

 ( ) { }])1[(tan1 2 ψγψ −+= CIC GG , (11) 

where the ratio γ = GI C /GII C has been introduced, together with the mode-mixity angle 
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which measures the relative amount of mode II with respect to mode I, by ranging from 0° (pure mode-I conditions) to 90° 
(pure mode-II conditions). 
As far as the strain energy release rate is to be determined, although it could be computed by direct calculation, it is more 
convenient to use Rice’s integral 
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where Γ is an arbitrary integration path around the crack front, φ is the strain energy density, nX is the X-axis component of the 
unit normal vector of the path, tX e tZ are the components of the stress vector. Alternatively, the strain energy release rate can 
be determined as 

 III GGG += , (14) 

where the contributions, GI and GII, relative to modes I and II can be deduced through the virtual crack closure technique. For 
our model, after some calculations here omitted for the sake of brevity, the modal components of G turn out to be 
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and the mode-mixity angle is 
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Application 

As an application, we consider the case of a thin superficial alumina layer (Al2O3) thermally grown on a nickel-based bond 
coating, such as those used for protecting superalloys against corrosion. According to literature [27], the material properties of 
the film are taken as Ef = 375 GPa and νf = 0.27, and those of the substrate as Es = 188 GPa and νs = 0.31. The thickness of 
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the film is Hf = 5 µm. Moreover, we assume that the spring constants of the interface can be expressed as 

 

)
11

(
10

2

sf

f
X

GG
H

k
+

=      and     

)
11

(
10

2

sf

f
Z

EE
H

k
+

= , (17a, b) 

so we obtain kX = 1.93x108 N/mm3 and kZ = 5.01x108 N/mm3, respectively. 
Figure 2a shows the buckling stress, σB, as a function of the half-length of the debonded region, a, as computed through 
Equation (5). Assuming that an initial debonding with size a = a0 is present, the applied stress at which buckling will take place 
can be deduced. Conversely, for each value of the applied stress, one can determine the maximum debonding size not 
susceptible of buckling. For instance, a0 = 100 µm yields a buckling stress σB = 804.1 MPa, quite lower than the stress 

predicted by the thin film model, σB.TFM = 12/)/( 22 aHE ffπ = 831.7 MPa. For the same initial debonding size, Figure 2b shows 

the structural response in the pre- and post-critical phases, in the plane of the applied stress, σf
∞, and the transverse 

displacement of the mid-span of the film, wf (0), according to Equations (6) and (7). 
 

  
a) b) 

Figure 2. Delamination buckling: a) buckling stress vs. debonding size. b) applied stress vs. transverse displacement. 
 

  
a) b) 

Figure 3. Interfacial stresses: a) normal stress vs. X-coordinate; b) tangential stress vs. X-coordinate. 
 
Figures 3a and 3b show the normal and tangential interfacial stresses, σZZ and τZX, respectively, arising in the bonded part of 
the film during the post-critical phase, as computed through Equations (8), (9) and (10). In particular, the above figures 
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correspond to an applied stress σf
∞ = 1466.2 MPa (which is equal to the stress, σG, defined below, corresponding to incipient 

crack growth). Both the components of stress attain a peak value at the crack front and then undergo rapid decay as the X-
coordinate increases. Furthermore, we notice that the normal component, σZZ, is positive right behind the crack front, where 
the substrate is consequently tensioned, and negative after a short distance, where the substrate is compressed. Successive 
oscillations in this stress component decay exponentially. A qualitatively similar response, although on a different order of 
magnitude, has been observed in recent studies concerning thin films on compliant substrates [29]. 

 

 

 

a)  

  
b) c) 

Figure 4. Strain energy release rate: a) total; b) mode-I component; c) mode-II component. 
 

Figures 4a, 4b and 4c show, respectively, the contour plots of the strain energy release rate, G, and its modal components, GI 
and GII, as given by Equations (14) and (15). Along the contour lines of G (Fig. 4a), the applied stress, σf

∞, is a decreasing 
function of a, so that Griffith’s classical growth criterion (G = GC) would predict unstable crack growth for any a. Along the GI-
contour lines (Fig. 4b), the applied stress, σf

∞, is initially a decreasing function of a, it then reaches a minimum and afterwards 
becomes an increasing function. Thus, if a pure mode-I growth criterion were assumed (GI = GI C), then stable growth would be 
predicted for debonding sizes greater than the value corresponding to that minimum. On the contrary, along the GII-contour 
lines (Fig. 4c), the applied stress, σf

∞, is a decreasing function of a, so that a pure mode-II criterion (GII = GII C) would always 
predict unstable growth. To sum up, the above findings further confirm the need of a mixed-mode criterion in order to get 
predictions consistent with experiments, which agree with reporting stable crack growth and crack arrest [4-7, 27]. 
A main difficulty in modelling the process of delamination buckling and growth is that the mode-mixity is not a constant, but 
undergoes a characteristic evolution during the post-critical phase. The proposed model is able to predict this evolution. Figure 
5a represents the contour plot of the mode-mixity angle, ψ, as given by Equation (16). This parameter is zero at incipient 
buckling (red curve) and then increases as either the applied stress or the length of the debonded region grows. Hence, a 
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transition from the opening (I) to the sliding mode (II) occurs as the process develops. Figure 5b represents the contour plot of 
the mixed-mode critical energy release rate, computed according to definition (11) and assuming GI C = 5.3 J/m2 and γ = 0.3 
[27]. We notice that upon buckling (red curve), pure mode-I conditions exist and, consequently, GC (ψ) = GC (0°) = = GI C; 
instead, as ψ  increases, GC (ψ) increases significantly as well (for ψ = 90°, it would be equal to GII C = 25.7 J/m2). 
 

  
a) b) 

Figure 5. Mixed-mode growth criterion: a) mode-mixity angle; b) critical energy release rate. 
 

  
  

Figure 6. Buckling stress and growth stress: a) buckling-driven decohesion for a0 > aG; b) case a0 < aG. 
 

The applied stress at which crack growth occurs, σG, can be predicted by solving for σf
∞ the equation G = GC(ψ). Thus, by 

putting together Equations (11), (14), (15) and (16), the growth stress can be obtained. This is shown in Figures 6a and 6b 
(blue curve) as a function of a, together with the buckling stress (red curve), σB. The growth stress exhibits a minimum for 
a = aG (point G), whose mechanical meaning can be highlighted by following the possible load histories on the above graphs. 
Let us suppose that an initial debonding of size a0 > aG is present (Fig. 6a). Upon loading, the point representing the status of 
the system moves from point A to B (pre-critical phase). At B, the film buckles and, if the applied stress is further increased, it 
enters the post-critical phase. During this (from point B to C), the strain energy release rate increases until it equals the critical 
value at point C. Afterwards, crack growth occurs with both the stress and the debonding size increasing along the curve CF. 
A different behaviour is predicted if the initial debonding has size a0 < aG (Fig. 6b). The pre- and post-critical phases (from 
point A to C) are similar to the previous case. But, when the point representing the status of the system reaches C, the applied 
stress cannot be further increased, in a quasi-static fashion, because of the descent of the growth curve towards point G. 
Actually, a dynamic crack growth is expected to take the system from point C to D. Here, if the applied stress is increased, 
then static growth takes place along the curve CF. Otherwise, the crack will arrest at a size corresponding to a1. 
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Conclusions 

In the foregoing we have set forth a mechanical model for the mixed-mode buckling-driven decohesion of a thin superficial 
layer from an underlying substrate loaded in compression. Despite its apparent simplicity, which allowed us to deduce an 
explicit solution, the model is able to predict some experimentally observed features, such as the arrest of the decohesion 
growth due to the predominance of mode II over mode I, as the load grows higher and the size of the debonded region 
extends. Moreover, the model appears a good candidate for describing some phenomena characterising the behaviour of thin 
films on compliant substrates. Further work is planned to validate the model through comparison of the theoretical predictions 
with experimental results and to extend the plane-strain model to more realistic geometries of circular and elliptic debondings. 
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