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Abstract 
 
In this paper, we present a numerical algorithm for tracing the equilibrium paths of simultaneously 
statically and kinematically indeterminate structures. The method is suitable for analysing reticulated 
deployable structures, and enables monitoring their evolution during the setting up. The main features 
of the method are illustrated through a simple example relative to a crank gear model. 
 
1 Introduction 
 
Deployable structures are a fascinating class of mechanical systems. In their original configuration 
they are unable to sustain applied loads, due to their kinematical indeterminacy. They become 
statically efficient just at a quite different final configuration where they acquire a relevant stiffness 
and load bearing capacity. A similar behaviour is shared with tensegretic structures, inflatable 
membranes, and many other innovative structures, whose use is intensively growing in modern 
buildings and civil constructions. 
These structures propose unusual structural problems, whose solution demands new analysis tools and 
non-conventional solution methods. In particular, static and kinematic indeterminacy, usually treated 
separately, must be taken into account simultaneously. The earliest studies on this argument are due to 
Kuznetsov [1975], Tarnai [1980] and Pellegrino & Calladine [1986], while more recent contributions 
are quoted in the paper by Kumar and Pellegrino [2000]. 
The above systems come out from an ‘assemblage’ of some elementary components, which in the 
original configuration is characterised by one or more degrees of freedom. In the deployed 
configuration these are lost and the structure as a whole is unloaded, while the composing elements 
usually are in a state of pre-stress [Smaili & Motro 2005]. The equilibrium configurations assumed by 
a mechanical system can be plotted in the space of the generalised loads and displacements as a set of 
curves called the ‘equilibrium path’ [Crisfield 1991]. The paths of deployable structures are 
characterised by kinematic branches, which represent their deployment mechanism. 
The Authors [1999, 2002] have proposed a path-tracing method which has proved to be effective and 
computationally efficient also in severe circumstances. In this paper, the method is modified in order 
to analyse the equilibrium paths of reticulated deployable structures. Particular attention is devoted to 
the detection of critical points and to the determination of kinematic branches. 
The main features of the algorithm are illustrated through the study of a simple crank gear model. 
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2 The equilibrium path 
 
The configurations assumed by a structure subjected to proportional loading are described by a vector 
of nodal displacements, q, which is solution of the non-linear equilibrium equation set 

 ,)();( 0pqqDqf =−= λλ  (1) 

where D(q) is the secant stiffness matrix of the structure, λ is the load multiplier and p is the reference 
load vector. The solutions of equations (1) can be plotted as a set of curves in the (n+1)-dimensional 
space spanned by λ and by the components of q, called the equilibrium path of the structure. By 
convention, the curve passing through the origin, t0 = [ 0; 0 ], is called primary branch, while curves 
intersecting it, if any, are called secondary branches. 
In the present work, equations (1) are solved by means of a predictor-corrector scheme of the ‘arc-
length’ family, based on the Newton-Raphson method [Ligarò & Valvo 1999]. The equilibrium path is 
obtained as a broken line of chords whose endpoints correspond to increasing values of the curvilinear 
abscissa, s. At a point, )]();([)( sss qt λ= , the unit tangent vector to the path, ];[ qt &&& λ= , is 
determined by solving the equation set 
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where K(q) = ∂[D(q)q]/∂q is the tangent stiffness matrix of the structure. 
Equations (2) are solved by diagonalising the tangent stiffness matrix through the Jacobi algorithm. In 
fact, since K is a symmetric and real-valued matrix, n mutually orthogonal eigenvectors exist, a1, a2, 
…, an, such that 

 niiii ,,2,1, K== aKa ω , (3) 

relative to n real eigenvalues, ω 1, ω 2, …, ω n. 
By expressing q&  with respect to the eigenvector basis, 
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where niu ii K&& ,2,1,T == aq , system (2) can be put in the following form 
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3 Point classification 
 
At a regular point, all eigenvalues are non-zero. Thus, the unit tangent vector can be determined by 
solving first system (5) as follows 
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and then making use of equations (4) to deduce q&  (the sign denotes the direction along the path). 
At a simple critical point, one eigenvalue is zero. Without loss of generality, we suppose that ω 1 = 0, 
while ω i ≠ 0 for i > 1. Solution of system (5) requires three cases to be considered: 
a) if pT a1 ≠ 0 then the critical point is a limit point, the tangent to the path is unique and is given by 
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b) if pT a1 = 0 and 01 ≠ω&  then the critical point is a bifurcation point, and two distinct tangents to the 
path are present 
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where ∑ =
=

n

i ii1
TaaA , while 1ω&  and 1a&  are the derivatives of the zero eigenvalue and of its 

related eigenvector with respect to the curvilinear abscissa, s; 
c) if pT a1 = 0 and 01 =ω&  then the critical point actually is a regular point of a kinematic branch, and 

the tangent to the path is again given by eqns. (7). 
At a double critical point, two eigenvalues are zero, say ω 1 = 0 and ω 2 = 0, while ω i ≠ 0 for i > 2. 
Among all the possibilities, here we restrict our attention to the case of a hill-top branching point, 
namely a compound critical point which is simultaneously a limit and a bifurcation point. In this case, 
two tangents to the path are present, and their expressions are 
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where 2/12
1

T
2

2
2

T
121 ])()[( −+±= apap ωωωωλ &&&&&&  and )/arctan( 1

T
2

T apap−=α . 
 
4 Application 
 
As a representative example of a deployable structure, we examine the mechanical behaviour of the 
simple crank gear depicted in Figure 1a. In the original (undeployed) configuration the two bars are 
superimposed, while in the final (deployed) configuration the bars are collinear. The load, λp, may 
increase only starting from the latter situation, which will be assumed as the reference configuration. 
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Figure 1. Crank gear model: a) structural scheme (L = 100 cm, EA = 105 kN, p = –100 kN); 
b) the equilibrium path in the u1-u2-v2 space. 
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Despite the apparent simplicity of the system, its equilibrium path (Figure 1b) exhibits a high degree 
of complexity. The path is composed of four branches: two static branches, S1 and S2, and two 
kinematic ones, K1 and K2. By convention, S1 is the primary branch because it passes through the 
origin, O. K1 and S2 are secondary branches intersecting the primary one. K2 can be classified as a 
tertiary branch, since it intersects both the secondary branches but not the primary one. 
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Figure 2. Plane views of the equilibrium path: a) on the u1-λ plane; b) on the u1-u2 plane. 
 

Figure 2a and 2b show two plane views of the equilibrium path as furnished by our algorithm. All the 
considered types of critical points are present. In particular, the primary branch S1 intersects the 
kinematic branch K1 at the bifurcation points B1 ≡ O and B2, and the static branch S2 at the hill-top 
points HT1 and HT2. The secondary branch S2 possesses four limit points denoted by L1, L2, L3, and L4. 
The tertiary branch K2 intersects the static branch S2 at the bifurcation points B3 and B4, and the 
kinematic branch K1 at the bifurcation points B5 and B6. 
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c)  

 

   d) 
Figure 3. A deployable truss: a) original configuration; b)-c) intermediate configurations; 

d) final (deployed) configuration. 
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The points of the kinematic branches are all characterised by the conditions 0== λλ &  and 
011 == ωω & . Each of them represents a finite mechanism of the structure. In particular, K1 

corresponds to the proper crank gear mechanism, where joint-1 moves freely back and forth along the 
x-axis, while joint-2 describes a circle of radius L. K2 corresponds to a mechanism where joint-1 is 
fixed together with joint-3 at the origin, while joint-2 again describes a circle of radius L. 
The many different mechanical responses of this example may put in serious difficulty most 
commercial codes for structural analysis, especially when the detection and description of the 
kinematic branches are required. Therefore, we believe that the above model may represent a valid 
benchmark test for any algorithm of non-linear structural analysis. 
 
The considered model can also be seen as an elementary component of more complex deployable 
structures, such as the truss schematised in Figure 3. The figure represents some of the shapes assumed 
by the system during its deployment. In particular, Figure 3a shows the original (undeployed) 
configuration, Figures 3b and 3c are relative to two intermediate states, and Figure 3d shows the final 
(deployed) configuration. Apart from the complexity stemming out from the increased number of 
degrees of freedom, the study of such structures does not differ conceptually from the simpler 
previously examined case. 
 
5 Conclusions 
 
In this paper, a numerical algorithm for tracing the equilibrium paths of simultaneously statically and 
kinematically indeterminate structures was presented. The algorithm is capable of determining the 
response of reticulated deployable structures, and of monitoring their evolution during the setting up. 
The effectiveness of the method was tested through the analysis of a simple crank gear model, whose 
equilibrium path features both static and kinematic branches, variously intersecting each other, and a 
wide gamut of critical points. More complex cases of reticulated deployable structures are under 
consideration. 
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