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A MECHANICAL MODEL FOR DELAMINATION GROWTH
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SOMMARIO
La memoria illustra un modello meccanico capace di descrivergekxita per fatica di
delaminazioni promossa da instabilita locale in laminati compsmifgetti a carichi ciclici di
compressione. Il laminato e visto come I'unione di due sublaminatiaraemte collegati da
un’interfaccia elastica, a sua volta modellata attraverso tmdetnolle elasto-fragili, agenti
sia nella direzione normale che in quella tangente al piano dell'interfaccia

Il modello consente di determinare le espressioni esplicite deftfgponenti normale e
tangenziale degli sforzi interlaminari e dei loro valori di pistl fronte della delaminazione;
quindi, consente di valutare separatamente i contributi dei modidla Nelocita di rilascio
dell’energia potenziale totale e I'angolo di modo misto. Sulla Hatai risultati, € possibile
utilizzare una legge di crescita per fatica che tenga coni® plesenza contemporanea di
diversi modi di propagazione della frattura, determinando, per ogni vdé&rearico, il
numero di cicli necessari per far estendere la delaminazion@di una lunghezza assegnata.
| risultati evidenziano modalita di crisi particolarmente insidi@ssembrano contribuire a
spiegare alcuni fenomeni di propagazione instabile e di arresto osserxiatesp@mente.

ABSTRACT

The paper illustrates a mechanical model for describing thguéatriven, mixed-mode
delamination growth fostered by local instability phenomena in composiiedtas subjected
to cyclic compressive loads. The laminate is modelled as the untao gublaminates partly
bonded together by an elastic interface, in turn, represented by aucwmstiarray of linear
elastic springs acting in directions normal and tangential to the iregpface.

The model allows for determining the explicit expressions fomtivenal and tangential
interlaminar stresses exerted between the sublaminates d¢lémeination front, as well as
their peak values. It thus enables evaluating the individual contributionsdass | and 1l to
the potential energy release rate as well as the value afiade-mixity angle. Based on the
results obtained, a mode-dependent fatigue growth law can then be dapptike into
account the simultaneous actions of the two different crack propagatides. Thus, for any
load level, predictions can be made on the number of cycles neededldtan@nation to
extend to a given length. The results shed light on the mechanismdyigdsome very
insidious failures and seem able to help explain some experinyesttabrved phenomena of
delamination growth and arrest.
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1. INTRODUCTION

Delamination can arise in fibre-reinforced composite laminaéleresult of many common
events, such as manufacturing errors or low-velocity impacts [1, 2, 3]. Waenreated plate
containing a delamination is loaded under compression, instability phenonagnaromote
further crack growth and, in some cases, lead to failure [4, 5, 6]. In order to modeldbespr
the loss of stability can be studied through the methods of non-lineetuséd analysis, while
delamination growth can be described through typical fracture mesh#émiearlier studies,
the total potential energy release r&ewas taken to be the parameter indicating the onset of
crack growth [7]. However, experimental studies on the subject havearshatwcrack growth
almost always involves the three classical modes of crack progagapening, sliding and
tearing. Therefore, delamination growth is more properly describaging a mixed-mode
growth criterion, whose application requires the energy releéseade broken up into the
sum of the contribution&,, G, and Gy, corresponding to the three propagation modes. To
this end, the peak values of the interlaminar stresses at thk-tigra responsible for
delamination growth, need to be evaluated [8, 9].

Previous works by the authors [10, 11, 12] introduced a mechanical modeldtamainated
plate subjected to monotonic compression. The plate is modelled as tre afniwo
sublaminates, partly bonded together by an elastic interface, vghichiurn represented by a
continuous array of linear elastic springs acting in directions aloamd tangential to the
interface plane [13, 14, 15, 16]. The model allows for the determining theieggpressions
for the normal and tangential interlaminar stresses exertegbértthe sublaminates at the
delamination front, as well as their peak values. It thus furnisieesmdividual contributions
of modes | and Il to the energy release rate, as well amdtie-mixity angle. Finally, a
mixed-mode growth criterion can be applied in order to predict the plestonof
delamination buckling and growth under static compressive loads.

The present paper extends the model outlined in the foregoing to intedsase of
delamination growth under cyclic compressive loads. In such caseé® dslaminated plate
undergoes repeated buckling and unloading, damage is progressively atedinatiléhe
delamination front. As a consequence, an existing delamination roay gven if the static
growth criterion is not satisfied (i.e., if the energy releaseisdéss than the critical value). In
what follows, a fatigue growth law, based on a mode-dependent ceitieedy release rate, is
applied [17]. This enables predicting the number of cycles neededi®amination to grow
to a given length. The results shed light on the mechanisms undesbynmg very insidious
failures and seem able to help explain some experimentally obsgivenomena of
delamination growth and arrest.

2. THE ELASTIC INTERFACE MODEL

Let us consider a rectangular laminated plate of lenigthwith B, and thicknessl, affected
by a central, through-the-width delamination of lengéh Phe laminate is subjected to two
compressive loads of intensiB/acting in the axial direction. The material is assumed to be
homogeneous and linearly elastic, with orthotropy axes aligned witle thioshe global
reference systel@XYZ

The elastic interface model (Fig. 1) conceives of the delantindéte as the union of two
sublaminates, partly bonded by a continuous array of linear elasticsprimgtwo individual
sublaminates are referred to as the ‘film’, which is therl&gdween the delamination plane
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and the nearest external surface (thickiid¥sand the ‘substrate’ (thicknest = H — H; ).
The interface springs act in both the normal and tangential dinecto the interface plane,
where they are characterized by the elastic constanég)dky, respectively. The widtB is
assumed to be ‘very large’, so the sublaminates can be modeledrasplates. Hence, the
‘reduced’ Young modulukx* = Ex / (1 —Wz Vzx) is introduced, and all calculations refer to a
unit width. According to the classical laminated plate theary Ex* H; andDs = Ex* H /

12 are the extensional and bending stiffness of the film, respgcthe= Ex* Hs andDs =
Ex* Hs / 12 are those of the substrate, #ng Ex* H andD = Ex* H®/ 12 are those of the
base laminate.

™~ N
v N

L-a k- a->ka—sk L-a
Debonded filmQ;
Bonded film,Qg,

-
o

S

2
(NS
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Fig. 1: The elastic interface model

Base laminateQ,

Under these assumptions, the differential equations of the equilibrioiolepr according
to von Karman'’s plate theory have been derived and solved completebseddbrm. The
explicit expressions for the solution in the pre- and post-buckling plasegported in the
above-cited works [10, 11, 12]. Herein, we limit ourselves to recatliegfundamental
results.

The pre-buckling phase is characterized by a linear relationshipdrethe applied load,
P, and the end displacement of the plateDuring this phase, the sublaminates undergo
uniform shortening, and the axial force is distributed between theproportion to their
extensional stiffness. This behaviour ceases when the axialifotbe debonded filmQ;,
equals the buckling load of the sublaminate. This is determined by athesolving a non-
linear transcendental equation, which yields the buckling load of theideli@d platepPsg,
i.e., the load applied to the base laminate at the incipient buckling of the film.

During the post-buckling phase, the substrate experiences axiahshgpd®ne, while the
film undergoes bending as well as shortening. Because of theedifidisplacements of the
two laminates, non-zero stresses arise in the interface spkilogsover, the energy release
rate,G = —oll/oa (N is the total potential energy of the system), which is zeougout the
pre-buckling phase, starts to increase.

G is the sum of the contributions of mode | and II:

G=G +G (1)

which are:
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G :kzafk 8/ a+a)tanh—|'_a P-Fy (2a)
' 2 2a .[2aj w ) A,
——=SINnf —
p) p)
Kk L-aP-P,\
G, :—x[wtanh—a BJ (2b)
2 w s

whereA? = (A Dy) / (As Pg); o = [kx (Ar* + AsH]™ anday is a dimensionless integration
constant.
Finally, the mode-mixity angle,

k, G
=arctan |[X* =L 3
7 ‘/kz G, (3)

is deduced. By convention, this provides a measure of the relative amdtanttofe modes
through values ranging from 0° (pure mode I) to 90° (pure mode II).

3. STATIC DELAMINATION GROWTH

According to Griffith’s classical criterion, crack growth s lbe expected whe@ equals a
critical value, G¢c. In the original and simplest formulatioGc is a material constant,
measuring the so-called ‘toughness’. Nevertheless, for anisotropieriaega such as
composite laminates, experimental determinationsGefare markedly dependent on the
propagation mode acting in the test performed (I or opening, Il dinglilll or tearing).
Actually, the critical value measured in pure mode Il teSig¢, is usually greater than that
obtained in pure mode Il test§, c, which may, in turn, be much greater than the value
measured in pure mode | teSB¢.

Under mixed-mode conditions, as all propagation modes are simultanactisly, the
toughness equals an intermediate value. Thus, in order to predict mratk,ga mixed-mode
criterion is to be adopted, by whiGt is considered to be a function of the relative amount of
the different propagation modes. In particular, for plane problems, ittealcenergy release
rate,

_ G| C
CeW)= 1t e ) )

wherey=G, ¢ / G, ¢, may be conveniently defined as a function of the mode-mixity angle [9].
For the present model the energy release @Gtis, the post-buckling phase is an increasing

function of the applied loadP, as shown by equations (1) and (2). Moreover, the mode-mixity
angle, ¢, increases as either the load or the delamination length growsankoassigned
delamination length, it is possible to determine the 1Bath), at whichG = G¢(¢), and static
delamination growth is expected. Fig. 2 shows the buckling load of thmithaited plateRs,

and the static delamination growth lo&d, as functions of the delamination half-length,
The following numerical values have been adopted:100 mmH = 10 mm andd; = 1 mm;
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Ex = 54 GPa andkz = 0.25;kx = 17284 N/mm andk; = 23333 N/mm G, ¢ = 100 J/mi and
Gy c = 1000 J/mh The loads have been divided by the Euler I¢ad,= T© D / L? = 4535.8
N/mm, and the delamination half-length has been dividdd by

1.00—=<¢
0.80
\ stable static grow
_0.60 \
D_“D) \ unstable static grow y
a 0.40 |
5 '/ P=Pg
Gmin
\€ V/ delaminatio
0.20¢ N . :
buckling
P=Pg P/
0.00+—2 T -

ag ac
0.00 0.20 0.40 0.60 0.80 1.00
alL

Fig. 2: Buckling load and static delamination growdad vs. delamination half-length

Two significant values of the delamination half-length have been gighti in the figure:
ag, at whichPg = Pgy, andac, at whichPg reaches a local minimurRgmin. If the length of the
existing delamination is such that < ag, then local buckling phenomena and related
delamination growth are not to be expected (although global instatahtybviously occur);
if, on the other handis < a < a¢, then delamination buckling and growth will be possible, the
latter resulting in an unstable process; finallyadf < a, then delamination buckling and
growth will be possible, though as a stable process.

For what follows it is useful to introduce an equivalent alterndivmulation of the
growth criterion. To this end, the energy release rate is n@edalith respect to the mode-
dependent toughness:

G

&=
Ge(w

5
) ®)

Consequently, under static loading, the condition for delamination growth bs¢bm1,
while no growth is instead predicted f6r< 1. With reference to Fig. 2, the static growth
condition is fulfilled by points belonging to the ‘growth curve’= Ps. On the other hand,
points located below or on the ‘buckling curve’s Pg, furnishG = 0. Lastly, for all points in
the region between the above two curves,®@ < 1, no static growth is expected. However,
delamination growth under cyclic loads is possible, as explainetieiméxt paragraph.
Finally, we should also note th@tturns out to be greater than 1 for all points located above
the growth curve. This means that these points are not reachabde quiasi-static load
history. Therefore, they have no meaning within the present model, whishndbaccount
for any dynamic effects.
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4. FATIGUE DELAMINATION GROWTH

Moving on to examine the case of fatigue delamination growth, lebnsider a laminated
plate affected by a delamination whose initial half-lengthyisWe assume that the applied
compressive load varies cyclically betwd®p, andPnax SO that the energy release rate will
vary betweenGni, and Gnax In these cases, experimental studies show that delamination
growth can occur because of the progressive accumulation of dam#ge agglamination
front as the delaminated plate undergoes repeated buckling and unloading.

According to [17], a fatigue growth law can be postulated,

~\mly)
da AG
“-c L 6
N W . )
whereN is the number of load cycles performed, and
AG = Crmax = Grin. @)
G (@)

is the range of the normalized energy release rate. In ¢(gh,and m(¢) are two mode-
dependent parameters to be determined by experiment. In particalanuttiplicative factor
is

o) =c, i+ (k ~1)sin? ()] ®)

wherek = ¢, / ¢; ¢ andcy are the values measured in pure mode | and |l tests, respectively
Analogously, mode dependence is introduced for the exponent, by setting

mi) = m [u+ (u-1)sin? () (©)

whereu =my, / m;; m andmy, are the values measured in pure mode | and |l tests, respectively.
The numerical values used for all subsequent figurexare50 mm/cycle and = 10;m, =
10 andu = 0.50.
In what follows we will assume that cycles are performed @iy = 0, so thahG = Gmax
and the fatigue growth rate (6) becomes:

This assumption, however, does not necessarily iBgly = 0, but just thaPnmi, < Pg,
sinceG = 0 in the pre-buckling phase.

The fatigue growth rategda/dN, is a positive increasing function @ .. Moreover,
because of the denominator of equation (10¥;as approaches unity, the growth rate goes to
infinity, so that instant (static) growth is predicted (Fig. 3s¥o, da/dN is an increasing
function of ¢ (Fig. 3b). Therefore, since the mode-mixity angle increastdseadelamination
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grows longer [12], the growth rate is expected to become higher ginek fas the process of

fatigue growth itself develops.
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Fig. 3: Fatigue growth rate: a) vs. normalized gpeelease rate and b) vs. mode-mixity angle

Fig. 4a shows7ma as a function of the delamination half-length. The dashed curve is for
Pmax = Pemin: at this load levelGmax presents a local maximum equal to 1. The curves below
the dashed one are By < Pomin: here it is alway$imax < 1. Finally, the curves above the
dashed one are fdmax > Pomin: at these load levels, some valuesGaky are greater than

unity and must therefore be excluded.

Fig. 4b representda/dN as a function of the delamination half-length. Once again, the
dashed curve is fdPnax = Pemin: for this and all higher load value$s/dN presents a vertical
asymptote. Instead, f6tax < Pcmin, the curves have a local maximum.
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Fig. 4. a) Normalized energy release rate and by growth rate vs. delamination half-length

The number of cycles needed for the delamination to grow from iital ilength, 2, to a

current length, & is given by:
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da. (11)

adN _ a2 1 1-G,_
AN(ao,a):LOEda:LDC(w)(é )m(l//)

max

Because of the analytical complexity of equation (11), the integratust be carried out
numerically. In the following, two cases are considered separately.

When the maximum load®nax is less than the minimum load at which static growth can
occur,Pemin = Ps(ac), then the straight lind) = P,a5 intersects the buckling curv@,= Pg, at
one point where the delamination half-lengdh, is such thaPg(ar) = Pmax (Fig. 5a). If the
initial delamination length is such thaj < ag, then no fatigue growth is expected, since no
local buckling will take place; instead,a$ > ar, then fatigue growth is predicted. Moreover,
fatigue growth will be ‘unlimited’, since in theory it can contirurgil the plate is completely
delaminated.

Instead, when the maximum lod@.y IS greater than the minimum static growth load,
Pemin, then the straight lind? = Pnay intersects the buckling curve, = Pg, atar. It also
intersects the growth curv®, = Pg, at two points where the delamination half-length is,
respectivelyas; andag; (Fig. 5b). As in the previous case, if the initial delamination length is
such thaby < af, then no fatigue growth is expected since no buckling will occur. Likewise, if
ap > acy, then ‘unlimited’ fatigue growth will take place. Instead, différeehaviour emerges
in the range o&r < ap < ag;: here, fatigue growth is possible, though it will be ‘limited’. In
fact, after a finite number of cycles have completeda aias;, the conditions for static
growth are fulfilled and the process can possibly continue in thedbstatic growth untika

= ag?.

limited unlimited
0.80 1 fatigue growth— fatigue growth—

\ unlimited / /

1.00 \ 1.00

0.80

_ 0.60 fatigue growt _ 0.60
3 >
[} (] 4
o no growtt\ o no growth\ / static growth / P=p,
o 0.40 o 04014 \r ¥ =1
— P
Pomin | x P= PGzV e o —
AN B\ ~ XX ’
0.20% o 0.20 \
P PGmin —
me L\P=PB_ ar Ao P =Py
0.00 7O 0.00- o Y
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
al/L al/L
a) b)

Fig. 5: Fatigue delamination growth: BR)ax < Pgmin and b)Pmax > Pemin

The following two figures are fdPmnax < Pcmin. They show the delamination half-length as
a function of the number of load cycles. A dashed line marks the \&lugr which no
fatigue growth occurs. Depending upon the maximum load level, the qualitie@gnd of the
fatigue growth process changes considerably. In Fig. 6a, the loadsl@pete 10w Pmay/Peul
= 0.10), and the delamination does not increase appreciably in lengttmongilthan 16
cycles have been performed. In Fig. 6b, the maximum IBag/P., = 0.20) is very close to
the minimum static growth loadPémin/Peu = 0.2084): here, rapid fatigue growth takes place,
leading to complete delamination in a number of load cycles of less than 10
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Fig. 6: Delamination half-length vs. number of laagles at constant maximum load:
a) Pmax = 0.10Peul and bPmax = 0.20Peul

The last plot (Fig. 7) is foPmax > Pemin. It sShows the delamination half-length as a function
of the number of load cycles. Fag > acp, very rapid fatigue growth is expected, leading to
complete delamination in less than 10 cycles. The curvayfer0.20 (in the ‘limited’ fatigue
growth range) predicts peculiar behaviour, by which the delaminatiansbag grow very
slowly, then, ata = agp, it suddenly makes a ‘jump’ leading to complete delamination. Such
behaviour clearly represents a very insidious and dangerous failure mode.

1.00

o.9c[
0.80 (G 0.8¢
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SR el
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0.20 0 /1 |

li
-ay/L =0.10— P madP eu = 0.25
0.00 |

T

1 10 10° AN 10° 10t 10°

Fig. 7: Delamination half-length vs. number of laagles at constant maximum lo&imax = 0.25Peul

5. CONCLUSION

The proposed mechanical model allows for deducing the explicit expredsr the normal
and tangential interlaminar stresses at the delamination frohén wocal instability
phenomena are present. Thus, it also allows for determining thatasgilin intensity of the
crack-growth forces, when cyclic compressive loads are acting.

Once a suitable fatigue delamination growth criterion has beenmghibss possible to
follow the evolution of the delaminated area. The results show that shanges in the
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governing parameters (initial delamination length, intensity of nieximum load) are
sufficient to produce totally different growth paths. These appdae tharacterised by either
a very slow evolution even for a very high number of cycles, or by a sudatesition in the
growth mechanism and by the arising of a nearly unstable growth.
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