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A MECHANICAL MODEL FOR MIXED-MODE 
BUCKLING-DRIVEN DELAMINATION GROWTH 

S. BENNATI1 and P. S. VALVO1 

1 Dipartimento di Ingegneria Strutturale, Università di Pisa, Pisa 

SOMMARIO 
La memoria presenta un modello meccanico per la crescita di una delaminazione presente in 
un laminato composito, promossa da instabilità locale. Il laminato, soggetto ad un carico di 
compressione nel suo piano, è modellato come l’unione di due sublaminati collegati fra loro 
da un’interfaccia elastica, costituita da una distribuzione continua di molle elastiche lineari 
agenti sia nella direzione normale al suo piano sia in quella tangente. Ciò permette di 
determinare gli sforzi interlaminari normali e tangenziali, scambiati tra i sublaminati, e di 
risalire alle espressioni esplicite dei contributi dei modi I e II alla velocità di rilascio 
dell’energia e, conseguentemente, dell’angolo di modo misto. Alcuni primi confronti con dati 
sperimentali presenti in letteratura sembrano confermare l’efficacia del modello. 

ABSTRACT 
The paper presents a mechanical model for buckling-driven delamination growth in composite 
laminates. The laminate, subjected to an in-plane compressive load, is modelled as the union 
of two sublaminates bonded together by an elastic interface, the last being a continuous 
distribution of linear elastic springs acting both normally and tangentially to its plane. Hence, 
the normal and tangential interlaminar stresses, exerted between the sublaminates, can be 
deduced, and the explicit expressions for the mode-I and II contributions to the energy release 
rate and, consequently, the mode-mixity angle derived. A first comparison with experimental 
data available in the literature seems to confirm the model’s effectiveness. 

1. INTRODUCTION 

Fibre-reinforced composite laminates are used in many civil and industrial engineering 
applications, where, thanks to their very high strength and stiffness and their low specific 
weight, they are gradually supplementing, or even replacing, traditional structural materials. 
On the other hand, composite laminates have also proved to be very sensitive to damage by 
environmental factors or localised defects. Of these latter types of damage, delaminations are 
both very dangerous and very common, as they may arise due to manufacturing errors (e.g., by 
an imperfect curing process) or in-service accidents (e.g., by low-velocity impacts) [1, 2]. 
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When a laminated plate containing a delamination is loaded under compression, the 
instability phenomena that arise may promote crack growth and, in some cases, lead to failure 
of the whole structure. In order to model the process of combined buckling and crack growth, 
the methods of non-linear structural analysis can be used to deal with the equilibrium 
problem, while the delamination growth can be described through fracture mechanics [3, 4]. 
The earliest studies on the subject assumed the total potential energy release rate, G, as the 
parameter signalling the onset of crack growth [5, 6]. Actually, G has often been preferred to 
other parameters, such as stress-intensity factors, because the calculations involved are easier 
(e.g., by means of invariant integrals) [7]. However, experimental studies on delamination in 
composite laminates have shown that crack growth almost always involves the three classical 
modes of crack propagation: mode I, or opening; mode II, or sliding; and mode III, or tearing. 
Therefore, delamination growth is more properly described by using a mixed-mode growth 
criterion, whose application requires the energy release rate to be split into the sum of the 
contributions, GI, GII and GIII , of the three different propagation modes [8, 9]. 

The following presents a mechanical model for buckling-driven delamination growth in 
composite laminates, whereby a laminated plate, affected by an initial delamination and 
subjected to an in-plane compressive load, is represented as the union of two sublaminates 
bonded together by an elastic interface. This elastic interface model differs from analogous 
approaches [10, 11] in that the interface is modelled as a continuous distribution of linear 
elastic springs acting in both the normal and tangential directions to the interface plane [12, 
13]. Hence, the normal and tangential interlaminar stresses exchanged between the 
sublaminates can be deduced, and the virtual crack closure technique used to derive the 
contributions of modes I and II to the energy release rate. Finally, the explicit expression for 
the mode-mixity angle, ψ, can be determined, and a mixed-mode growth criterion applied. 

Kirchhoff’s plate theory is used to model the above sublaminates, except for the region of 
the so-called ‘debonded film’, which is treated as a von Kármán plate in order to account for 
instability phenomena. Moreover, the elastic constants of the spring distributions, kZ and kX, 
are chosen in such a way as to reproduce the behaviour of the thin layer of resin joining the 
laminae together in a real laminate [14]. The system equilibrium is described by a non-linear 
differential problem, whose explicit solution has been determined in the case of a through-the-
width delamination. The lengthy calculations needed to deduce this solution have been 
omitted here for the sake of brevity: only the final expressions are presented, along with some 
results in the form of graphs. However, full details can be found in [15] or in [16]. 

The paper closes with a comparison between the theoretical predictions stemming from the 
proposed model and some experimental results previously obtained by other authors [17]. 

2. FORMULATION OF THE PROBLEM 

2.1. The model 
Let us consider a rectangular laminate of length 2L, width B, and thickness H, affected by a 
central, through-the-width delamination of initial length 2a, located at a depth Hf from the 
nearest external surface (fig. 1). A rectangular reference system, OXYZ, is fixed with origin at 
the centre of the laminate and axes parallel to its edges. We consider the material to be 
homogeneous and linearly elastic. Let the orthotropy axes be aligned with those of the 
reference system, and let EX, EY, EZ, GXY, GYZ, GZX, νXY, νYZ, and νZX be the material’s elastic 
constants. Finally, let two compressive loads, P, act in the X-direction. 
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Figure 1 – Laminate with a through-the-width delamination, loaded under compression. 

The model conceives of the delaminated plate as the union of two sublaminates, namely 
the film, included between the delamination plane and the nearest external surface and having 
a thickness Hf ≤ H / 2, and the substrate, comprised between the delamination plane and the 
furthermost external surface and having a thickness Hs = H – Hf . Each sublaminate is further 
split into a bonded portion and a debonded portion (fig. 2). 
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Figure 2 – The elastic interface model. 

We assume that width B is ‘very large’, so that each sublaminate can be modelled as a 
beam-plate, i.e., as a plate with possibly non-zero curvature only in the XZ-plane. Therefore, 
the ‘reduced’ Young’s modulus EX* = EX / (1 – νXZ νZX) is introduced, and all calculations to 
follow refer to a unit width (B = 1). Hence, the extensional and bending stiffnesses of the film 
are Af = EX* H f and Df = EX* H f

3 / 12, respectively; As = EX* Hs and Ds = EX* Hs
3 / 12 are 

those of the substrate, and A = EX* H and D = EX* H3 / 12 are those of the base laminate. 
Moreover, the elastic constants of the normal and tangential springs will be denoted as kZ and 
kX, respectively. 
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2.2. Equilibrium equations 
We suppose that the ‘thick column’ hypothesis holds or, in other words, that Df << Ds and the 
instability phenomenon is basically confined to the region of the debonded film Ωf. 
Accordingly, von Kármán’s plate theory can be adopted for modelling Ωf, whose transverse 
displacements, wf, can be moderate or large. The classical Kirchhoff plate theory is instead 
used for the bonded film Ωfk, whose transverse displacements, wfk, are considered small. 
Moreover, the transverse displacements of the substrate, ws and wsk, are wholly neglected, but 
axial displacements, uf, ufk, us, and usk, are accounted for in all sublaminates. 

Under the above assumptions, the resulting differential equations of the equilibrium 
problem are 
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for the debonded film Ωf; 
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for the bonded film Ωfk; 
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for the debonded substrate Ωs; and 
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for the bonded substrate Ωsk. 
In the above expressions, Pf is the buckling load of the debonded film (to be determined as 

explained in the following) and λ, µ and ω are auxiliary constants, defined by: 
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The differential problem is completed by appropriate boundary conditions, which include 
the symmetry condition on the YZ-plane (only a half plate is considered in the calculations) 
and the clamped-end condition at the loaded end of the laminate. 
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3. SOLUTION OF THE PROBLEM 

3.1. Equilibrium in the post-critical phase 
The stated equilibrium problem can be solved completely in explicit form [15, 16]. For 
brevity’s sake, here we limit ourselves to presenting the final expressions only. In particular, 
the expressions for the transverse displacements of the film in the post-critical phase are 
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where Af is the amplitude of the sinusoid representing the transverse displacement of Ωf, and 
df, afk, bfk, cfk, and dfk are dimensionless integration constants (see [13] for their expressions). 

Likewise, the expressions for the axial displacements in the four sublaminates are 
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where PC = Pf (A / Af) is the buckling load of the delaminated plate, i.e., the load applied to 
the laminate upon incipient buckling of the debonded film. By putting expressions (6) and (7) 
into the boundary conditions, a set of linear homogeneous algebraic equations for the six 
unknown integration constants is obtained. For a nontrivial solution to exist, its determinant, 
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must vanish. Thus, the buckling load, PC, is found numerically by imposing det R = 0. 
Next, the integration constants can be determined explicitly and, in particular, the 

amplitude of the film’s transverse displacement, 
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which is zero throughout the pre-critical phase, becomes an increasing function of the applied 
load only after buckling has occurred. 

For the purposes of illustration, the subsequent numerical values have been chosen to 
render the figures provided: L = 100 mm, H = 10 mm and Hf = 1 mm; EX = 54 GPa, 
EY = 18 GPa, GXY = 9 GPa and νXY = 0.250. Moreover, loads have been made dimensionless 
by dividing by the Euler load, PEUL = π2 D / L2 = 4535.8 N/mm (which is the buckling load of 
the undamaged plate), and the delamination half-length, a, has been divided by the plate 
length, L. 
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Figure 3 – Post-critical equilibrium: a) buckling load of the delaminated plate vs. delamination half-length; 

b) applied load vs. mid-span transverse displacement of the film. 

The curves in figure 3a represent the buckling load, PC, as a function of the delamination 
half-length, a, for a range of values of the normal spring constant, kZ. As expected, PC is a 
decreasing function of a. As a/L → 0 (no delamination), the predicted buckling loads tend to 
infinity, a consequence of having neglected the instability of the bonded film. However, 
values of PC/PEUL > 1 have no physical meaning and must therefore be excluded. Instead, as 
a/L → 1 (complete delamination), PC → Pf

L (A / Af), where Pf
L = π2 Df / L

2 = 4.5 N/mm is the 
buckling load of the completely debonded film. 

Moving on to examine the post-critical behaviour, we assume a fixed delamination half-
length, a = 20 mm. Figure 3b shows the applied load vs. the transverse displacement of the 
mid-span section of the debonded film, wf (0), made dimensionless by dividing by Hf. A range 
of values for the normal spring constant, kZ, has been considered, while the tangential spring 
constant has been set at kX = 2/3 kZ. 
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It is worth noting that as kZ → ∞,  the predictions of the elastic interface model (blue 
curves) approach those of the thick column model (TCM) [6] (red curves). The elastic 
constants of the interface can be chosen as 
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where Er and Gr are the elasticity moduli of the resin, and t is the thickness of the lamina [14]. 
In the following, we have assumed Er = 3.5 GPa, Gr = 1.3 GPa and t = 0.15 mm. In general, it 
is reasonable to expect that kZ = 104 ÷ 106 N/mm3 and kX / kZ = 2/3 ÷ 1. 

 
3.2. Delamination growth 
Once the transverse and axial displacement have been determined, it is possible to arrive at 
the explicit expressions for the normal and tangential interlaminar stresses: 
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Figures 4a and 4b, respectively, show the two foregoing stress components as functions of 
the abscissa, X, for increasing load levels. Both components reach a maximum at the 
delamination front and then undergo rapid decay as X increases. 
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Figure 4 – Interlaminar stresses at the delamination front: a) normal stress; b) tangential stress. 

Griffith’s classical crack growth criterion, however, is not expressed directly in terms of 
interlaminar stresses. Rather, it assumes that crack growth takes place when the energy 
release rate, G = – ∂Π / ∂a (where Π is the total potential energy of the system) reaches a 
critical value, GC. In its original and simplest formulation, GC is a material constant to be 
determined by experiment. Nevertheless, for anisotropic and inhomogeneous materials, such 
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as composite laminates, it is an established fact that experimental determinations of GC are 
markedly dependent on the propagation mode (I or opening, II or sliding, III or tearing) 
operative in the test performed. Actually, the critical value measured in a pure mode-III test, 
GIII C, is usually greater than that obtained in a pure mode-II test, GII C, which may, in turn, be 
much greater than the value measured in a pure mode-I test, GI C. 

Under mixed-mode conditions, i.e., when all propagation modes are simultaneously 
operative, an intermediate value of GC is to be expected, depending on which mode prevails. 
In these cases, a so-called mixed-mode criterion is to be adopted by considering GC to be, 
rather than a constant, a function of the relative amount of the different propagation modes. 
For plane problems, for which mode III is irrelevant, a possible definition of the critical 
energy release rate is: 
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where the ratio λ2 = GI C /GII C has been introduced, together with the mode-mixity angle, 
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which conventionally measures the relative amount of mode II with respect to mode I, by 
ranging from 0° (pure mode-I conditions) to 90° (pure mode-II conditions) [9]. 
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Figure 5 – Mixed-mode criterion: a) mode-mixity angle; b) critical energy release rate. 

A main difficulty in modelling the processes of combined delamination buckling and 
growth is that the mode mixity is not fixed once and for all, but undergoes a characteristic 
evolution. As a fundamental result of the present model, the contour plot of ψ has been 
obtained (fig. 5a): it shows that the mode-mixity angle is zero upon incipient buckling (red 
curve) and then increases as either the applied load or the delamination length grows. Hence, a 
transition from the opening (I) to the sliding mode (II) occurs as the process itself develops. 

Figure 5b represents the contour plot of the mixed-mode critical energy release rate, 
computed according to definition (12) and assuming GI C = 100 J/m2 and GII C = 1000 J/m2. It 
should be stressed that upon buckling (red curve), pure mode-I conditions exist and, 



SS_DAN_12 - 9 

consequently, GC (ψ) = GI C; instead, as ψ increases, GC (ψ) increases significantly as well 
(for ψ = 90°, it would be equal to GII C). 

The potential energy release rate, G, now remains to be determined. According to the 
virtual crack closure technique, G is the sum of the modal contributions, 
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where the hat (^) refers to a plate in which the delamination has experienced a ‘virtual’ growth 
by a length ∆a, and the asterisk (*) denotes the effective system. By substituting relations (6), 
(7) and (11) into (14) and performing the calculations, the following results are obtained: 
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Figures 6a and 6b show the contour plots of the mode-I and II contributions to the energy 
release rate, GI and GII, respectively. Clear differences emerge in the qualitative trends of the 
two families of curves. In fact, along the GI-contour lines, the applied load, P, is initially a 
decreasing function of a; it then reaches a minimum and afterwards becomes an increasing 
function. Consequently, if a pure mode-I growth criterion were assumed (GI = GI C), then 
stable growth would be predicted for delamination lengths greater than a certain value, 
corresponding to that minimum. On the contrary, along the GII-contour lines, the applied load, 
P, is a decreasing function of a, nearly up to a = L, so that a pure mode-II criterion 
(GII = GII C) would predict unstable growth until complete delamination ensues. 
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Figure 6 – Potential energy release rate: a) mode-I contribution; b) mode-II contribution. 

Likewise, along the contour lines of the total energy release rate, G = GI + GII (fig. 7a), the 
applied load, P, is initially a decreasing function of a, and then reaches a minimum, after 
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which it becomes an increasing function. However, in this case the increasing trend is very 
weak, so that adopting Griffith’s classical growth criterion (G = GC = const.) would predict 
stable growth, but only in theory, as very small increments in P would suffice to promote 
complete delamination. 

Figure 7b shows two curves summarising the main results obtained so far through the 
proposed model: the red is the buckling curve, defined by P = PC(a), which indicates the 
beginning of instability phenomena; the blue is the growth curve, defined by G = GC(ψ), 
which represents the process of delamination growth. Two important values of the 
delamination half-length have been highlighted in the figure: a1, at which PC = PEUL, and a2, 
at which the applied load along the growth curve reaches a minimum. The mechanical 
interpretation of these values is as follows: if the length of the delamination is such that 
a < a1, local buckling phenomena and related delamination growth are not to be expected 
(although global instability can still occur!); if, on the other hand, a1 < a < a2, delamination 
buckling and growth will both be possible, the latter resulting in an unstable process; finally, 
if a2 < a, then delamination buckling and growth will once again be possible, but the latter 
will be a stable process. 
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Figure 7 – Delamination growth: a) total energy release rate; b) buckling and growth curve. 

4. CONCLUDING REMARKS 

In the foregoing we have set forth a mechanical model, termed the elastic interface model, for 
buckling-driven delamination growth in composite laminates. Despite its apparent simplicity, 
which enables arriving at an explicit solution, the model appears able to furnish a number of 
relevant predictions regarding both the system equilibrium in the pre- and post-critical phases, 
and the process of delamination growth and its stability, while also accounting for mixed-
mode propagation. 

However, considering, amongst other aspects, the many simplifying assumptions 
introduced, one might suspect the foregoing results to be merely theoretical and, therefore, of 
little practical interest as far as applications are concerned. In order to mitigate such doubts, 
the model’s predictions have been subjected to a first validation through comparison with 
some available experimental data. 
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For the sake of this comparison, figure 8a has been drawn from a wide-ranging 
experimental study on graphite-epoxy laminates affected by through-the-width delaminations 
[17]. The figure shows the strains, εf and εs, for increasing load levels as measured by two 
strain-gauges glued to opposite sides of a specimen, corresponding to the film and the 
substrate, respectively. Three phases of the specimen’s response can be clearly discerned: in 
the first phase, relative to pre-critical behaviour, the load-strain curve is almost linear; 
thereafter, a bifurcation point is reached and a second phase, corresponding to post-critical 
behaviour, follows; finally, a third phase, associated with delamination growth, is observed, 
where abrupt discontinuities in the strain measures appear prior to failure of the specimen. 
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Figure 8 – Load-strain plot for a small delamination (2a = 19.05 mm): a) experimental; b) theoretical. 

Figure 8b shows the predictions of the elastic interface model for the same case using the 
numerical values adopted in the cited paper: 2L = 50.8 mm, B = 25.4 mm, H = 2.54 mm and 
Hf = 0.51 mm; EX = 139.3 GPa, EY = 9.72 GPa, GXY = 5.59 GPa and νXY = 0.29; Er = 3.5 GPa, 
Gr = 1.3 GPa and t = 0.127 mm; GI C = 193 J/m2 and GII C = 455 J/m2. Moreover, in line with 
classical laminated plate theory, Af = 71182 N/mm and Df = 1531 N mm2, and relations (10) 
yield kZ = 28000 N/mm3 and kX = 20000 N/mm3. The theoretical predictions match the 
experimental data both qualitatively and quantitatively. There is, in particular, a very good 
correspondence between the two determinations of the bifurcation point. Finally, it is worth 
noting that during the growth phase, a sort of snap-through phenomenon is predicted, which 
might serve as an explanation for the discontinuities in the strain-gauge measures. 
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Figure 9 – Load-strain plot for a large delamination (2a = 38.10 mm): a) experimental; b) theoretical. 
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Figures 9a and 9b refer to a larger initial delamination length. Once again in this case, the 
theoretical and experimental results agree quite closely. The main discrepancy regards the 
values reported by the strain-gauge fixed on the thicker side of the laminate: because of global 
buckling, during the post-critical phase the measured strains retrieve a part of the compressive 
(negative) deformation and, after a certain load level, even become positive. Such behaviour 
cannot be foreseen by the model, which completely disregards bending of the substrate. 

The last aspect, as well as many others such as a more general plate geometry and a 
stronger material anisotropy, no doubt deserves further investigation. However, the promising 
results obtained up to now give good reason to hope in the success of future studies. 
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