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Abstract. The paper is concerned with the determination of the stress distribution in the
regions of a soft elastic membrane surrounding geometrical or structural discontinuities, such
as holes, slits, inclusions or local stiffeners. The severity of the stress concentration is
assessed through a general non-linear model that considers large displacements, large
deformations and a non-linear elastic material law. Inability of the membrane of sustaining
any compressive stress, highlighted by the occurrence of wrinkling and local buckling, is
automatically accounted for by recourse to the concept of relaxed strain energy. Solution of
the stated problem is obtained within a FEM framework, where an arc-length path-tracing
procedure allows to follow the evolution of the phenomenon. Applications present the case of
a rectangular membrane endowed with a circular or straight central defect – a void or a rigid
inclusion. Numerical results show that when wrinkling is taken into account the stress-
concentration differs significantly from that predicted by the standard membrane theory,
being in some cases less severe.
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1 Introduction

The study of the stress distributions in a soft elastic membrane constitutes a fundamental
problem in bioengineering, chemistry and biology. At the same time, it is an attractive object
of research in aircraft, spacecraft and civil engineering [1, 2].

The lack of bending stiffness characterises the behaviour of a real membrane, preventing it
from sustaining compressive stresses of appreciable value, even when a remarkable
extensional stiffness is exhibited under tension. Broadly speaking, loss of stability is referred
to as buckling when the deformed configuration shows low-frequency undulations, and
wrinkling when small-amplitude high-frequency waves materialise [3].

Experimenting on an initially flat elastic membrane subject to planar loads, we observe that
three types of regions can be clearly individualised on its equilibrium configuration:
a) taut or active regions, where both principal stresses are positive (tensile) or zero;
b) wrinkled regions, where one principal stress is positive or zero and the other one is

negative (compressive, although negligible in value);
c) slack or inactive or buckled regions, where both principal stresses are negative (again

negligible in value).

A major difficulty in treating equilibrium problems concerning a partly wrinkled membrane is
that the boundaries of the aforesaid regions are a priori unknown. Moreover, if the membrane
is made of a soft material, then these evolve continuously during the loading process.
Consequently, one should also account for the possibility of large deformations and adopt a
non-linear material law.

The problem considered in this paper appears under many respects even harder. In fact, our
will to know led us to ask what effects would be produced by the introduction of geometric or
structural discontinuities – such as holes, slits, local stiffeners or rigid inclusions – in an ideal
membrane. In these cases, achieving some solutions, even approximate, requires a number of
different phenomena to be taken simultaneously into account.

The model we propose here treats each stated issue through a specific tool. In particular:
a) large deformations are considered by adopting the Green-Lagrange measure of strain;
b) material non-linearity is entered by using Ogden’s law [4];
c) wrinkling and buckling phenomena are automatically accounted for by modifying the

assumed constitutive law, according to Pipkin’s concept of relaxed energy density [5, 6];
d) the governing set of non-linear equilibrium equations is derived via the principle of

stationary (minimum) total potential energy;
e) solutions are obtained in a FEM context based on a total Lagrangian formulation;
f) the evolution of the phenomenon is monitored via an incremental-iterative procedure of

the arc-length type [7].

As a application, we present the cases of a rectangular membrane endowed with circular or
straight central defects – voids or rigid inclusions. Results show that if wrinkling is
considered, the stress-concentration changes significantly with respect to the standard
membrane theory. This is qualitatively highlighted by the surfacing of different location and
extension of taut, wrinkled and slack regions around the defect.
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2 Problem formulation

2.1 Geometry

An initially flat membrane occupies in the unstressed reference configuration, C*, the region
Ω of the plane OXY, bounded by the curve ΓΓΓΓ. The membrane thickness, h, is assumed to be
constant and negligible with respect to the in-plane dimensions of the body. The displacement
vector, uu = , is prescribed on a part, ΓΓΓΓu, of ΓΓΓΓ. In-plane edge traction, tt µ= , proportional to

a single multiplier, +ℜ∈µ , is assigned on the part ΓΓΓΓp. On the boundary, ΓΓΓΓi, surrounding the
internal defect proper conditions will be posed each time.

Let [ ] T0,,YX=X be the position vector of the material point, Ω∈P , in the reference
configuration. In a variable configuration, C, that point occupies a new position,

[ ] T,, zyx=x , thus experiencing a total displacement, [ ] T,, wvu=−= XxU .

In a wrinkled region points experience small or moderate out-of-plane displacements, while
the displacement gradient, XU ∂∂ , shows high-frequency oscillations. Instead, in a buckled
region out-of-plane displacements can be large. So, a suitable measure of strain is given by
the Green-Lagrange tensor
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Because of its thinness, at equilibrium the membrane can be considered to be in a prevailing
state of generalised plane stress. So, the relevant strain components are XXE , YYE and

XYXY EG 2= , since 0== YZXZ EE and ZZE is a function of the remaining ones.

According to Wu [3], the strain vector, [ ] T,, XYYYXX GEE=e , can be written out as

wεεεεεεεε +=e , (2)

where the planar strain vector, εεεε, accounts for the contribution of the components u and v,
while the wrinkle strain vector, wεεεε , depends on the out-of-plane displacement, w.

2.2 Material non-linearity

We suppose the membrane to be made of a homogeneous isotropic hyper-elastic material of
the type proposed by Ogden, whose energy density expressed in terms of the principal
stretches, 1λ , 2λ , and 3λ , is the function
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Limiting the above summation to 3=N and adopting the hypothesis of incompressibility

1321 =λλλ , (4)

one obtains the expression
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From (5) we derive the expressions for Biot’s principal stresses, 1t and 2t , which are work-
conjugate to the principal stretches, 1λ and 2λ
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2.3 The relaxed energy

Depending on the values assumed by 1λ and 2λ , the principal stresses (6) may be positive or
negative, in the latest case contradicting the stated inability of the membrane of sustaining
compressive stresses. To obviate this inconsistency, the energy density function, ω, must be
modified in such a way that compressive stresses within wrinkled and slack regions are
inhibited.

According to Pipkin [5], this can be done replacing the function ω appearing in (5) with a
relaxed energy, relω . Based on the circumstance that any folding of the membrane surface

must take place leaving unchanged its strain energy, relω will depend on the planar strain

vector, εεεε, only, while the wrinkle strain vector, wεεεε , does not play any role in the following
analysis.

Recognition of the different-in-type regions of a membrane surface is based on the concept of
natural width [5]. We say that a point P belongs to a taut region, if the planar principal
stretches, 1λ and 2λ , satisfy there the conditions

2/1
21
−≥ λλ and 2/1

12
−≥ λλ . (7)
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Vice versa, point P belongs to a wrinkled region if

11 >λ and 2/1
120 −<< λλ , or, alternatively, if 12 >λ and 2/1

210 −<< λλ , (8)

Finally, we consider point P belonging to an inactive (slack or buckled) region if

10 1 ≤< λ and 10 2 ≤< λ . (9)

The relaxed energy, relω , is then defined as follows
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where ω is still given by (5). With this, local buckling and wrinkling phenomena are formally
treated as a physical non-linearity.

2.4 Solution strategy

By adopting a total Lagrangian formulation, we define a modified total potential energy of the
system as

( ) ∫∫
Γ

Γ⋅−=Π
p

ddVvu
V

rel utµωµ
0

,, (11)

where [ ] T, vu=u denotes the planar displacement vector, while 0V and ΓΓΓΓp refer to the volume

and the loaded boundary of the membrane in C*, respectively.

For a given load parameter, µ, equilibrium of the system corresponds to stationary points for
the functional (11). Then, solving the system of equilibrium equations for increasing values of
the load multiplier, µ, permits the tracing of the equilibrium path, which fully describes the
evolution of the phenomenon.

For the sake of brevity, details of the solution strategy are here omitted and will be postponed
to a forthcoming paper.
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3 Applications

Applications here presented are concerned with the analysis of an initially flat rectangular
membrane endowed with a central discontinuity, circular or straight in shape. The membrane
is mmB 1002 = wide and mmL 4002 = long. Its thickness is mmh 1.0= . The defect has
diameter mma 102 = (Figure 1a). Edges parallel to the X-axis are constrained to remain

straight and are subjected to an increasing load, [ ] T,0 tµ=µ= tt , where mmNt /02.0= .
Edges parallel to the Y-axis are traction-free.

The following values

,63.01 MPa=µ ,0012.02 MPa=µ ,01.03 MPa−=µ
,3.11 =α ,0.52 =α ,0.23 −=α

(13)

were used for Ogden’s strain energy density function.

In presenting our results, we will refer to a reference longitudinal stretch, which is defined as

L

vL +
=λ , (12)

where 2v is the relative longitudinal displacement between the two transversal edges, and to a
reference stress defined as

h

t
S REF

YY λ
µ

= . (12)

3.1 Rectangular membrane with a central circular hole

In the first case discussed, the membrane is endowed with a central circular hole (Figure 1a).
Thanks to symmetry, only a quarter of the membrane needs to be considered in the FEM
model. It comprises 557 nodes and 995 constant strain/constant stress triangular elements,
including 20 “very stiff” elements that were used to enforce the rigidity constraint at the
loaded edge (Figure 1b).

Analysis was carried out twice. First, the standard membrane theory was used, where both
tensile and compressive stresses are allowed. Then, the wrinkled membrane theory described
in the previous section was applied. Results of the two analysis cases are illustrated by means
of Figures 2 through 4.
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Figure 1: Rectangular membrane with a central circular defect: a) geometry and loads; b) FEM model.

Figure 2a represents the load multiplier, µ, as a function of the reference longitudinal
stretch, λ. No appreciable discrepancy can be noticed between the two analysis cases,
meaning that the global behaviour of the membrane is the same. Figures 2b, 2c and 2d show
the transversal and longitudinal displacements of points B, C and D of the membrane as the
load multiplier, µ, is increased. It is evident that larger displacements are obtained from the
wrinkled membrane theory model, which results to have a lower stiffness.



Salvatore S. Ligarò, Paolo S. Valvo

8

0.0

3.0

6.0

9.0

12.0

15.0

18.0

1.0 1.1 1.2 1.3 1.4 1.5
Reference longitudinal stretch, λλλλ

L
o

ad
m

u
lt

ip
lie

r,
µµ µµ

Standard

Wrinkled

a)

0.0

3.0

6.0

9.0

12.0

15.0

18.0

0.0 2.0 4.0 6.0 8.0 10.0
Horizontal displacement, u B [mm]

L
o

ad
m

u
lt

ip
lie

r,
µµ µµ

Standard

Wrinkled

b)

0.0

3.0

6.0

9.0

12.0

15.0

18.0

-10.0 -8.0 -6.0 -4.0 -2.0 0.0
Vertical displacement, v D [mm]

L
o

ad
m

u
lt

ip
lie

r,
µµ µµ

Standard

Wrinkled

c)

0.0

3.0

6.0

9.0

12.0

15.0

18.0

0.0 0.5 1.0 1.5 2.0 2.5
Horizontal displacement, u C [mm]

L
o

ad
m

u
lt

ip
lie

r,
µµ µµ

Standard

Wrinkled

d)

Figure 2: Rectangular membrane with a central circular hole: equilibrium path.

The stress-concentration around the geometrical discontinuity is different in the two analysis
cases. Figure 3a shows the ratio, REF

YYXX SS C , between the X stress component in the
neighbourhood of point C and the reference stress, as a function of the reference longitudinal
stretch, λ. The XXS stress-concentration appears to be less severe if wrinkling effects are
considered.

The opposite is true for YYS . This is evidenced by Figure 3b that represents the ratio,
REF
YYYY SS C , between YYS in the neighbourhood of C and REF

YYS , as a function of λ. For both
analysis cases, this stress-concentration tends to unity as the reference longitudinal stretch is
increased. In fact, as the membrane experiences larger and larger displacements, it conforms
to the applied loads.
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Figure 3: Rectangular membrane with a central circular hole: stress concentration.

As load is increased, the changes in the state of stress in the membrane are highlighted by the
emergence of a different location of taut, wrinkled and slack regions. The evolution of the
phenomenon can be valued by examining the sequence of the deformed configurations.
Figure 4 shows some of these, correspondingly to the incremental steps given in Table 1.

A slack region can be observed in the neighbourhood of the hole at the very first steps.
However, this region soon vanishes as the reference longitudinal stretch increases.

Incremental
step

0 1 21 27 37 53

Reference
stretch

1.000 1.002 1.047 1.104 1.200 1.353

Load
multiplier

0.000 0.114 2.835 5.928 10.344 15.974

Table 1: Rectangular membrane with a central circular hole: incremental steps.
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Figure 4: Rectangular membrane with a central circular hole:
sequence of equilibrium configurations.
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3.2 Rectangular membrane with a central circular rigid inclusion

The second application case considers the presence of a central circular rigid inclusion in the
membrane. Geometry, loads and FEM model are as in the previous example (Figures 1a and
1b), except for the conditions at the internal boundary which is now fixed. Again, analysis
was carried out using both the standard membrane theory and the wrinkled membrane theory.

Figure 5a represents the load multiplier, µ, as a function of the reference longitudinal
stretch, λ. No appreciable discrepancy can be noticed between the two analysis cases,
meaning that the global behaviour of the membrane is apparently the same. Figure 5b shows
the transversal displacements of point B of the membrane as the load multiplier, µ, is
increased. Slightly larger displacements are obtained from the wrinkled membrane theory
model.
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Figure 5 Rectangular membrane with a central circular rigid inclusion: equilibrium path.

Figure 6a shows the ratio, REF
YYXX SS C , between the XXS stress component in the

neighbourhood of point C and the reference stress, REF
YYS , as a function of the reference

longitudinal stretch, λ. Figure 6b represents the ratio, REF
YYYY SS C , vs. λ. Results from the two

analysis cases differ qualitatively. In fact, while the standard membrane theory predicts an
increasing stress concentration for both stress components, the wrinkled membrane theory
furnishes a rigorously zero XXS and a negligible YYS .
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Figure 6: Rectangular membrane with a central circular rigid inclusion: stress concentration.

The surfacing of taut and wrinkled regions as load is increased, can be appreciated from
Figure 7 that shows a sequence of deformed configurations of the membrane corresponding to
the incremental steps given in Table 2.

Incremental
step

0 1 21 27 37 53

Reference
stretch

1.000 1.002 1.048 1.105 1.202 1.356

Load
multiplier

0.000 0.123 2.925 6.053 10.508 16.183

Table 2: Rectangular membrane with a central circular rigid inclusion: incremental steps.
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Figure 7: Rectangular membrane with a central circular rigid inclusion:
sequence of equilibrium configurations.

Taut

Wrinkled

Slack



Salvatore S. Ligarò, Paolo S. Valvo

14

3.3 Rectangular membrane with a central slit

In the third case presented, the membrane is endowed with a central slit (Figure 8a). Only a
quarter of the membrane is considered in the FEM model. It comprises 550 nodes and 983
constant strain/constant stress triangular elements, including 20 “very stiff” elements used to
enforce the rigidity constraint at the loaded edge (Figure 8b).

Y

tt µ=
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X
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E
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tt µ=

Figure 8: Rectangular membrane with a central straight defect: a) geometry and loads; b) FEM model.

Analysis was again carried out by using standard membrane theory and wrinkled membrane
theory. Figure 9a represents the load multiplier, µ, in terms of the reference longitudinal
stretch, λ. No appreciable discrepancy can be noticed between the two analysis cases,
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meaning that the global behaviour of the membrane is still the same. Figures 9b, 9c and 9d
show the transversal and longitudinal displacements of points B, C and D as the load
multiplier, µ, is increased. Larger displacements are obtained from the wrinkled membrane
theory model.
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Figure 9: Rectangular membrane with a central slit: equilibrium path.

Figure 10a shows the ratio, REF
YYXX SS C , as a function of the reference longitudinal stretch, λ.

The XXS stress-concentration is less severe if wrinkling effects are considered. Figure 10b

represents the ratio, REF
YYYY SS C , vs. λ. For this stress component, only a slight discrepancy can

be noticed between the two analysis cases.
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Figure 10: Rectangular membrane with a central slit: stress concentration.

As load is increased, a different location of taut, wrinkled and slack regions appears on the
membrane surface. Figure 11 shows the deformed configurations corresponding to the
incremental steps given in Table 3. A slack region is clearly observable in the neighbourhood
of the slit at all the steps considered.

Incremental
step

0 1 21 27 37 53

Reference
stretch

1.000 1.002 1.047 1.104 1.200 1.354

Load
multiplier

0.000 0.116 2.855 5.960 10.391 16.040

Table 3: Rectangular membrane with a central slit: incremental steps.

3.4 Rectangular membrane with a central straight rigid inclusion

The last application case concerns the presence of a central straight rigid inclusion. Geometry,
loads and FEM model are as in the previous example (Figures 8a and 8b), except for the
conditions at the internal boundary which is now fixed. Again, analysis was carried out using
both the standard membrane theory and the wrinkled membrane theory.

Figure 12a represents the load multiplier, µ, in terms of the reference longitudinal stretch, λ.
No appreciable discrepancy is found between the two analysis cases. Figure 12b shows the
transversal displacements of point B as µ is increased. Slightly larger displacements are
predicted by the wrinkled membrane theory.
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Figure 11: Rectangular membrane with a central slit:
sequence of equilibrium configurations.
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Figure 12: Rectangular membrane with a central straight rigid inclusion: equilibrium path.

Figure 13a shows the ratio, REF
YYXX SS C , in terms of the reference longitudinal stretch, λ.

Predictions of the wrinkled membrane theory are less severe, since this stress component
assumes nearly negligible values. Figure 13b represents the ratio, REF

YYYY SS C , as a function
of λ. For this stress component, it is the standard membrane theory that gives less severe
predictions.
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Figure 13: Rectangular membrane with a central straight rigid inclusion: stress concentration.

Figure 14 shows the deformed configurations at the incremental steps given in Table 4.
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Figure 14: Rectangular membrane with a central straight rigid inclusion:
sequence of equilibrium configurations.
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Incremental
step

0 1 21 27 37 53

Reference
stretch

1.000 1.002 1.048 1.105 1.201 1.355

Load
multiplier

0.000 0.122 2.915 6.035 10.477 16.135

Table 4: Rectangular membrane with a central straight rigid inclusion: incremental steps.

4 Conclusions

A model was presented for determining the stress distribution around discontinuities, such as
holes or rigid inclusions, in soft elastic membranes subjected to increasing loads.
Characterising issues are:
a) the adoption of a non-linear material law suitable for large deformations;
b) the possibility of automatic account for local buckling and wrinkling phenomena;
c) the implementation of the mechanical model within a FEM framework, where a wide

variety of problems can be further posed and solved;
d) the use of an incremental-iterative strategy that permits to monitor the evolutionary

aspects.

Applications, concerning a rectangular membrane endowed with a central circular or straight
defect, showed that the stress concentration is always very different from that predicted by
Linear Elastic Fracture Mechanics and can be in some cases less severe.
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