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Abstract. This paper presents a one-dimensional model of a composite lanpfeteedontaining a
delamination and subject to uniaxial compression, where the delampiateds thought of as two
sublaminates partly connected by an elastic interface. Thicamtanuous distribution of normal
and tangential linear elastic springs, aiming to model the behaivtbe thin layer of resin joining
the laminae together in a real laminate. The nonlinear equilibeiguations, derived from von
Karman's plate theory, are solved explicitly and the normal anckmaiadinterlaminar stresses are
determined. The virtual crack closure technique is used to deduceptiessans of the mode-1 and
mode-Il energy release rates, needed for applying a mixed-mode crack-giitevibncr

Introduction

Composite laminated plates are successfully used in many saluapplications, thanks to their
high strength and stiffness compared to their low specific wdigifartunately, these materials are
also very sensitive to damage and their attractive propertitess shé presence of defects, such as
interlaminar cracks or delaminations, frequently due to manufactermogs or produced during
service (e.g. by low-velocity impacts). Whatever might be themgrdelaminations can drastically
reduce the stiffness and the load-carrying capacity of a structure.
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Figure 1 — Delaminated plate loaded in compression.

n

Consider a laminated plate containing a delaminated surface, oninai@n, S;, generic in
shape and location, parallel to the middle plane of the plate (FighfBe Tifferent regions can be
defined in the plate: the delaminated regiQg, included between the delamination and the nearest
external surface; the substra®, between the delamination and the farthest surface; and, finally,
the base laminat&),, unaffected by the presence of the delamination. Under compressive loads
complex instability phenomena can occur, involving both the global bucklifge afiiole plate and
the local buckling of the regionQy and Q.. Furthermore, in the post-critical phase, high
interlaminar stresses arise in the neighborhood of the delaminaimindS;, thus promoting crack
growth. As the delamination becomes larger, the geometry of tamieited plate changes and, in
general, a new equilibrium state is found. The process may letabte growth and crack arrest or
to unstable growth until final failure.
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Literature on delamination buckling is very extensive and a comabei@unt cannot be given
here. The first studies on the subject were by Kachanov [1] andeCdda{2], who introduced the
Thin Film Model (TFM) and theThick Column Model (TCM). Other pioneering contributions were
given by Whitcomb [3], Bottega and Maewal [4] and Yin [5]. Afterwanthsny theoretical and
experimental studies have been carried out. A number of cases haenbbBged, differing for the
geometry and the boundary conditions of the plate, for the number, the sdape @osition of the
delaminations. Many solution strategies have been proposed, both analyticaimerical. Despite
this great effort of research during the last two decades, @letmmunderstanding of the
phenomenon is far from being reached. Delamination buckling is stifi@ of research and many
questions, such as anisotropy [6], interface modeling [7], fiber bridgingrack nucleation [9],
mixed-mode crack-growth and so on, deserve a deeper investigation. Also camputathniques
need to be refined [10] and a continuous comparison with experimental results is pgtégsar

In the delamination buckling process, the phenomena of instability artdré&raare intimately
related and take place simultaneously. Actually, some studies [4,@@]pnaposed a variational
formulation to derive both the equilibrium solution and the crack growth &xamique suitably
defined functional. However, the prevailing approach is to analyze theaspects separately:
firstly, the nonlinear equilibrium problem is solved and secondly a crack-growthaeriie applied.

The stability problem can be dealt with in the framework of ieiastheory [13]. This approach
has the advantage that interlaminar stresses, responsiblediorgooavth, are obtained as a part of
the solution. On the other hand, considerable analytical difficulties beusaced, even having
recourse to numerical methods. Therefore, most studies are basedsbrutcheal theories [14].
The delaminated plate is then modeled as an assemblage of bedmpsat@s, but angirect
information about interlaminar stresses is lost.

As far as the fracture phenomenon is concerned, the classicabfdoésture mechanics are
usually employedLocal parameters describing the singular stress-field at the dedéion front,
such as the stress-intensity factdks, ky, andk;;, are obtained directly when the post-critical
solution is found via elasticity theory [15]. Instead, when a structnoalel is used, they can be
estimateda posteriori from the computed solution [16]. Alternativelygkobal parameter, such as
the energy release rate, can be considered. An advantage in doing this is that many methadds exis
to evaluateG rather easily (e.g. by numerical differentiation, by invariarggrdls, etc.) [17], while
a considerable drawback is that no distinction among the three diffa@des of crack growth
(opening, sliding, and tearing) is usually possible. Instead, experingtathes have repeatedly
highlighted the need of a mixed-mode crack-growth criterion in tee o&composite laminates,
where fracture toughness is much greater in mode Il (sliding) than in mode | (op&8ing) [

A more detailed description of the process of layer separatiobecachieved by the theory of
interface models. In this case, the laminated plate is scleeats a stacking of laminae, bonded
together by interposed interface layers of zero thickness [19}lamiear stresses are modeled by
suitable constitutive laws, which can include the effects of anggtiplasticity, viscosity, damage
and so on. As the complexity of the interface model grows, howeverdiffisulties in its use and
in the identification of all the necessary parameters increase [20].

The simpler conceivable interface is probably one constituted by amwoms distribution of
linear elastic springs. Different values of the elastic comstdor the normal and tangential
directions can be assumed and a fracture criterion can be introdusettiby an upper limit to the
values of the elastic reactions. Models endowed with elastidaoésr have already been proposed
for the study of delamination buckling. Vizzini e Lagace first medel “delaminated sublaminate”
as a beam on an elastic foundation. They considered only normal spithgsrdined their analysis
to the determination of the buckling load [21]. Bruno and Grimaldi analgisedthe post-critical
behavior and considered delamination growth by assuming a limit elomdati the springs [22].
Elastic springs also in the tangential direction were considaredme papers [23,24,25], but in
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none of these, the normal and tangential interlaminar stressescamiputed in view of the
application of a mixed-mode crack-growth criterion. Actually, tlestet interface was introduced
there to describe the boundary conditions of the delaminated region ccorately than th&C
Model, which assumed clamped ends. The final aim was a better evalaatios buckling load,
rather than the gain of information on interlaminar stresses.

The present paper describes a one-dimensional model of a lamindedmidaining a through-
the-width delamination, subject to uniaxial compression. Bhstic-Interface Model (EIM) is
constituted by a thinner sublaminate (the so-called film) conneatadhicker one (the substrate)
by a continuous distribution of normal and tangential elastic springs. dlastic constantk; and
kx, should be chosen in order to reproduce the behavior of the thin layeingbneimg the laminae
together in a real laminate [26]. The simplifying “thick columnpbthesis is supposed to hold, so
that in the post-critical phase the film undergoes transverse displacements,thatsulistrate.

The equations derived from von Karman’s plate theory, together withpipr®priate boundary
conditions, lead to a nonlinear differential problem. In the simplex wéth no tangential springs
(kx = 0), an exact explicit solution is determined, leading to a model called in theifg\dhnkier-
Interface Model (WMM), because the interface acts as a Winkler-type foundation. Iretieeal case
with both normal and tangential sprindgs £ 0 andkx # 0), an approximate explicit solution is
found. Normal and tangential interlaminar stresses are deterramtedhe virtual crack closure
technique is used to deduce the expressions of the mode-I and mode-Il energy rekease rat

Analytical details cannot be given here for reasons of brevity ailldbw reported in a
forthcoming paper. However, some results in the shape of graphs seatpceto highlight the
influence that the geometric and elastic parameters have ontrtetul response. A first
comparison among thel, theW and thelC Models is made.

Position of the problem

The model. Consider a rectangular plate of length @idth B, and thicknessl, (Fig. 2). A central
through-the-width delamination of initial lengtra 2s present, at a deptHy from the nearest
external surface. A rectangular reference sys@4YZ, is fixed with the origin in the center of the
plate and with the axes parallel to its edges. The materedmogeneous and linearly elastic, with
orthotropy axes aligned with those of the fixed referenceEkety, Ez, Gxy, Gyz, Gz, Vv, Wz, and
Vzx be its elasticity moduli. Two compressive forces of interi3igt in thex-direction.

Qs 4z S
Z
P Y P
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Figure 2 — Plate with a through-the-width delanioratloaded in compression.

Under the above hypotheses, the solution does not depend upofictiwedinate and the
delaminated plate can be modeled as an assemblage of beamiglafdates of constant width
undergoing cylindrical deformation in t&-plane. Accordingly, all the following calculations will
be referred to a plate with unit widtB € 1).
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The proposed model considers four regions partly connected by a distribtitimrmal and
tangential springs, whose elastic constant&asadky (Fig. 3):

a) thedelaminated film Qq of thicknesHy <Hy, / 2, included between the delamination and the
nearest external surface;

b) theadhering film Qg of thicknesdHy, connected to the substrate by the elastic interface;

c) thedelaminated substrate Qg of thicknessHs = H, —Hg, included between the delamination
and the farthest external surface;

d) theadhering substrate Qg of thicknesds, connected to the film by the elastic interface.

l L e L N
I IS 2
||< Ly * a * a * Ly \|
ANNN | K / >l<! A [Qd Quk //// Q,

\ |
‘ S-S S K —Z> %%%%%I;

Figure 3 — The Elastic-Interface Model

Equilibrium equations. Only a half plate is considered in the calculation scheme, where suitable
restraints on the symmetry axis and clamped end conditions ammeasgFig. 4). An auxiliary
reference system with the origin at the delamination front, sucblXtkaX —a, is also fixed.

| Ag, Da~

%mﬁx

Figure 4 —El Modél: calculation scheme.

Each sublaminate is modeled as beam-plate undergoing moderatmsota&tAy = Ex Hq and
Dq = Ex Hd3/ 12 be the extensional and bending stiffnesses of the film, resped@te\s = Ex Hs
andDs = Ex HS / 12 be those of the substrate; Agt= Ex H, andDy, = Ex Hp> / 12 be those of the
base laminate. According to von Karman'’s theory, the following differential equation

64W+ 0*w +64w:
oxX* ox?%Y? ov*

1 0°w 0°w 9°w  om*  om’ ow ow @
== N* +2N ——— +N" + + - =+
D X2 oX oY ay> oxX oy oX oY
governs the bending problem for each sublaminate; while the extensional problemilieddscr
X XY XY Y
ON +6N +£%X=0  and ON +6N FfY =0, )
oX oY oX oY

where, as usualy is the transverse displacememt andm" are the distributed moment loads;
f " andq are the distributed loads and, finaly*, N, andN " are the membrane forces.
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In the present model, all the derivatives wY.and all the quantities in thédirection are zero.
The load terms andf * are zero for the delaminated regiofls,andQs, while they are equal to the
elastic reactions of the interface for the adhering sublamirjeandQs.

It is convenient to define the constanigs andc all having the dimensions of length:

D D
F=_d=-—d @3)
RPONg
D
/.14 = 4k_d’ (4)
z
1 1
’ (5)

W E——,
kx ]/Ad +]/As

whereP¢¢ = -Ng" is thebuckling load of the delaminated region, to be determined as explained in
the following. The load that correspondingly is applied to the base lamirRite=iB;~ (Ap / Ag).

According to the so-called “thick column” hypothesis, it is here suppibse®s >> Dy. So, any
transverse displacements of the substratge,and wg, are neglected, while the transverse
displacements of the filnwy andwy, are taken into account. Axial displacements ug, Us, and
Ug, are considered in all sublaminates. With this, and by using thetatiastiaw to express axial
forces in terms of displacements, the governing equations become:

0°w, ! 0°w,

oxt T REaxz ©)
2 c

%+1 % +P_d:0’ (7)

oX 2\ oX A,

for the delaminated filn8g;

'w, A, o ||ou, 1fow, ) |ow 4

% _ Do dhop = “2d || Tk Ly gy, =0, 8)
X! D, oX,||ox, 2lox,) |oX, [ u
oau, 10 (ow,) 1 1

>+ - __2—(udk _usk)zo’ ©)
0X? 20X, | 0X, w* 1+A, /A,

for the adhering filmQgy;

w, =0, (10)
_ C
%LAP" =0, (11)

for the delaminated substrdig;

w, =0, (12)
2
ausk+ 1 1

——(u, —u, )=0, 13
axkz w21+AS/Ad(dk sk) ( )

for the adhering substrafy.
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Solution of the problem

Equilibrium in the post-critical phase. An exact explicit solution to the above statedet#htial
problem could be obtained in the simpler case withiangential springkf = 0), leading to what is
called here theMnkler-Interface Model. Despite the choice of not considering any tangent
stresses is questionable in principle, the depwadif an exact solution is useful to test the rtssoi
other approximate analyses [21,22]. The final exgons that were obtained are rather lengthy and
cannot be given here, but results in the shapeaphg are reported in the following section.

In the more realistic, general caske:#0 and kx # 0) of the Elastic-Interface Model, an
approximate explicit solution was found, by neglegthe nonlinear contribution to the axial strain
in Egns. (8) and (9). Consequently, the adherilmg €4 is treated as a standard beam-plate that
undergoes transverse displacements, acting asaaticelestraint for the delaminated fily, but
does not take part directly in the instability pberenon.

The final expressions of the transverse displacésr@rthe film in the post-critical phase are

w, = Aj(cos;+dd], (14)
W, = A [adk cosh& + Dy sinhﬁj cos& + [cdk cosh& +dg, sinhﬁjsinﬁ} : (15)
H H H H H H

wheredy, ag, bak, Cak, anddqk are dimensionless constants of integrationfAndvith the dimensions
of length, is the amplitude of the sinusoid repnéisg the transverse displacementf
The expressions of the axial displacements are

C 2

ud :—P_X —i(z_x—sinz_xj’ (16)
A, 81\ A A

udk-‘i(Xk +a)+ acosh&ﬂusinhﬁ —i(é—sinéj AScosh&+ﬁ , (17)
A, ) w w) 81 A A NA, A,

us:_i |:>_ﬁ|:>C X, (18)
As Ab

usk:-i(xk+a)—ﬁ P-P acosh&ﬂusinhﬁ —i(é—sinéj cosh&—lj . (19)
A, Ayl A w w) 81\ 1 A w

By putting expressions (14) to (19) into the bougdaonditions (whose expressions are here
omitted for brevity), a set of linear homogeneolgglaraic equations for the six unknown constants
of integration is obtained. For a nontrivial sabutito exist, its determinant,

detR = —%sec2 i{ﬂp{secﬁ L ginbe coste + tanhij cos® +
Au U Hooou U A
(20)
+ {(2/12 + ,uz)secrf Lecog ooy —,uz}sing},
TR A

must vanish. Hence, the buckling load of the defateid regionPs° = Dq/ A%, can be found by
solving numerically Eqgn. (20).
The nondimensional constants of integration arerdghed as



Proceedings of the 5" Seminar on ETDCM (Cagliari, Italy, September 28-29, 2001) 7

2
d, = _,u2 tanh= tan = —1 cosg+i3 (2/12+;12)t<’slnhi+(2/12—llz)tani sin (21)
24 Y7 M A 44 Y7 Y7 A
a, :—ztanhitanicosg+i (2/12+ yz)tanhi+(2/12— ;zz)tani sin2 (22)
<28 u oy A Ax U ul A

ol +ut) a

bdk = _%S”‘];, (23)
R =) - a

Cax = —%sm;, (24)
__ M A

dy = —ﬁcos} (25)

The amplitudeAq, which is zero throughout the pre-critical phasereases after buckling has
occurred, according to the following law

81 P-P°©

" 28/ -sin2a/1)

derived by enforcing compatibility between the éxlisplacements of the film and of the substrate.

L, (26)

A’ (a+wtanhij
w

S

Delamination growth. All the relevant quantities, such as resultantdsrand moments, stresses
and strains, displacements, etc. can now be detednexplicitly in terms of the post-critical
solution. In particular, the normal and tangentiaerlaminar stresses, whose knowledge is
necessary in view of the application of a mixed-mordhck-growth criterion, are

0, =k, A Kadk cosh& +by, sinhﬁJ cosﬁ + (cdk cosh& +d,, sinhﬁjsinﬁ} : (27)
H H H H H H
_pC
T, =—k, P-P a{tanhicosh&—sinhﬁj. (28)
s w w w

By the virtual crack closure technique, the enerjgase ratei = -9l / da (I being the total
potential energy of the system), is split into skien of the contributions of modes | and I,

. 1 Na [~

G :Aa“mr:nﬂoIa 0 AW(Xk _Aa)agz(xk)dxk, (29)
. 1 a [~

G, =AaI|Dr]nq0% OA Au(Xk —Aa)TEX(Xk)ka , (30)

where the hat (") refers to a plate where the delaton has virtually grown by a lengffa and the
star (*) is relative to the effective system. Bystituting the previously obtained solution int®)2
and (30), by performing the integration and thatlithe following expressions are finally found:

_pC
a+ a)tanhi P-P : (31)
w) A

S

81
2a/A -sin(2a/A)

1
G :Ekzagk

G, :lkx(wtanhip P J : (32)
2 w A

S
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Someresults

As an application, a plate with =100 mm,Hq=1 mm andH, =10 mm is considered. The

assumed elastic moduli

are typical

of a fiber-@ioéd composite: Ex=113000 MPa,
Ey = 9000 MPaGyxy = 3820 MPa. In the following graphs, load valuesmade nondimensional by

dividing them by the Euler load®™" = 77 D, / L = 9294 N/mm (which is the buckling load of the

undamaged plate) and the delamination lergytts divided by the plate length,

The curves plotted in Figs. 5 and 6, computed usiiegM and theEl Models, respectively,
represent the buckling load of the pla®&, as a function of the delamination lengghfor a range

of values of the normal spring constaat,

1.00 L1l

0.80 +

0.60 +

0.40

kZ=10? N/mm?

kZ=10° N/mm?

kZ=10* N/mm?

kZ=10° N/mm?

kZ=10' N/mm?

Nondimensional buckling load, P ¢/pP "

0.00

0.20

0.40

kZ=10" N/mm?®

k#=102 N/mm?®

k%=0 N/mm?®

1.00 [T |

0.60 0.80 1.00
Nondimensional delamination length, a/L

Figure 5 M Model: Buckling load of the plate vs. delamination ldngt

Nondimensional buckling load, P ¢ /P "

il
\\\\\\\\\\(v

k,=10" N/mm?

k,=10? N/mm?

k ;=10° N/mm?®

k,=10* N/mm?

k,=10° N/mm?

0.20
k=1 N/mm?®
\,\\\: —
0.00 ! —
0.00 j 0.20 0.40
k,=10" N/mm?® k =102 N/mm?® k ;=0 N/mm?®

0.60 0.80 1.00
Nondimensional delamination length, a/L

Figure 6 —EI Model: Buckling load of the plate vs. delamination léngt
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In both cases?® is a decreasing functions afand as/L — 1 (complete delamination® goes
to P° = (A, / Ag) 77 Dg/ L% AsalL — 0 (no delamination), theM Model furnishes finite values,
namely the buckling loads of a beam on an elastiodation. Instead, tH&l Model predicts loads
that go to infinity. This is a consequence of hguireglected the instability of the adhering film. |

any case, values &/

PEUL

> 1 have no physical meaning and must thereforexbleided.

As kz — oo (rigid interface), the buckling loads furnished tigth models approach those of the
TC Model. Instead, ak; — 0 (no interface)p® — P

1.00

0.80

>/

k,=10° N/

0.60

k ,=10°> N/mm?®

-

d

k,=10* N/mm?

0.40 +

0.20 4

k,=10° N/mm?

Nondimensional applied load, P /P "

0.00

0.00

N~ | ky=10" N/mm?

k=1 N/mm?®

/

— | k;=10" N/mm?

e

1.00

2.00

Nondimensional transverse displacement, w 4 (0)/H 4

k =102 N/mm?®

k ;=0 N/mm?®

Figure 7 W Model: Applied load vs. transverse displacement of tidpmint.
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© 0.40 ‘
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o

‘0 kz=1 N/mm? l//
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: 7
c

o

2

—_—
0.00 %

0.00

Nondimensional transverse displacement, w 4 (0)/H 4

1.00

2.00

3.00

k ;=0 N/mm?®

4.00 /

Figure 8 —EI Model: Applied load vs. transverse displacement of tigpmint.

5.00

In a composite laminate, the interface represdmghin layer of resin between the laminae, so
its elastic constants should be assigned in terfniseoproperties of the resin itself [26]. Lacking
those data, their values are commonly deduced fhenproperties of a single lamina, as follows:
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EY G XY

, and k, = , (33)

k, =—Y
2t t

whereEy andGyy are the elasticity moduli in the direction orthogbto fibers and is the thickness

of the lamina [19,20]. For a typical fiber-reinfert composite, it can be approximately expected
thatkz = 10" + 10° N/mn?® andky = 1/5 + 1/2k;. So, as regards the buckling load, ¥eand theEl
Models can be utilized indifferently, since their predicts nearly coincide fde, = 10 N/mnr.

Moving on to examine the post-critical behaviofix@d delamination lengtta = 15 mm, and a
tangential spring constaik =kz/ 2 are assumed. Figs. 7 and 8, obtained viaAhand theEl
Models, respectively, show the applied load vs. the trarse displacement of the midpoint of the
delaminated regionyy (0), made nondimensional by diving it by.. TheW Modd reveals a less
stiff response than thEél Model, due to the lack of a tangential interlaminar bogdIt is worth
noting how, ak; — o, theW Model doesnot converge to th&C Model, while theEl Model does.

1.00 ‘
G =600.0 J/m’ B G = 1000.0 J/m?

3 | |
5 080 G =500.0 J/m? — | G=900.0 J/m?

-~ I

o 2 2

S G=400.0 J/m G=800.0 J/m

®©

© ‘ ;

5 0604 G = 300.0 J/m? /— G=700.0 I/m

3]

= - 2

o G=200.0 J/m | |

© | | 1

s 0.40 4 1

5 ]

17

o 17

£ 0204 " l

= G=100.0 J/m /
g 2

z G=0.0J/m

0.00 = . e
0.00 0.20 0.40 0.60 0.80 1.00

Nondimensional delamination length, a/L

Figure 9 —-El Model: Energy Release Rate vs. delamination length pptieal load.

Finally, the process of delamination growth for EHeModel is considered, assuming the elastic
constantskz = 5.6 x 18 N/mm® andkx = 2.4 x 16 N/mn?, given by Eqns. (33) with=0.16 mm.
According to Griffith’s criterion, the crack stars grow when the energy release r&gattains a
critical value, G°. Fig. 9 represents a contour plot Gf as a function of the nondimensional
delamination lengtha/L, and applied load?/P="". During the pre-critical phase, the film and the
substrate do not undergo any relative displacem#nis the interlaminar stresses are zero and so is
G. Consequently, no growth is predicted for loadss lthan the buckling load. During the post-
critical phaseG increases with increasing load. When the criticdle is reached, delamination
growth occurs and the point representative of thte of the systema(P), moves along a contour
line, G = G®. Growth will be stable iP increases with increasiray unstable i decreases.

The critical energy release rat8°, is a material constant to be determined by erpsnts.
Nevertheless, for composite laminates, values medsn a pure mode-I tes§;©, can be several
times those measured in a pure mode-I @St, So, a more realistic crack-growth criterion skloul
account for themode mixity, by assigning different weights to the contribnicof modes | and Ii
[18]. A rough choice, yet useful for the sake dfistration, is assuming that only one mode is
relevant and that the delamination grows when eithe G or G, = G,. Fig. 10 and 11 represent
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the contour plots of the mode-I and mode-Il enemggase ratess and G, respectively.G-
contour lines are initially decreasing with then they attain a minimum and afterwards they
become increasing curves. Consequently, the modetérion predicts stable growth for
delamination lengths greater than a certain valirethe contrary(-contour lines are decreasing
curves, corresponding to unstable growth, neardytd. (complete delamination).
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Figure 10 -El Model: Mode-I (opening) Energy Release Rate vs. delaimimdéength and applied load.
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Figure 11 -El Model: Mode-II (sliding) Energy Release Rate vs. delation length and applied load.

Conclusions

A one-dimensional model of a delaminated plate aitlelastic interface between sublaminates was
presented. The governing equations were solvedic#tkplin two cases, leading to a simpler
Winkler-Interface Model and to a more compleixlastic-Interface Model. The virtual crack closure
technique was used to deduce the expressions aidde-I and mode-Il energy release rates.
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Numerical results illustrated the role played bg tpeometric and elastic parameters of the
models. For values corresponding to real lamindkes\M and theEl Models furnished nearly the
same buckling loads (lower than those given byTtiiek Column Model). In the post-critical phase,
the W Model showed a less stiff response than Ehé/lodel. In the limit case of a rigid interface,
the WI Model did not converge to th&C Model, while theEl Model did. These circumstances
should warn against the errors that can be madeeghgcting the tangential interlaminar stresses.

Finally, the process of delamination growth wagftyidiscussed. The contour plots@fG, and
G revealed markedly different qualitative trends tisat different predictions about crack growth
and its stability were possible, depending on whiabde had a prevailing weight in the adopted
growth criterion. The taking into account of thedeamixity is thus confirmed as a crucial issue.
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