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Abstract. Standard arc-length methods, which use a constant step-length, may encounter
serious difficulties when tracing the equilibrium paths of ‘perfect’ ‘guasi-perfect’
structural systems. In these cases, in the neighbourhood of bifurcation gr shamg
points, erroneous jumps of the algorithm onto different branches are always possible.

These drawbacks can be efficiently overcome by using a self-adap#teggtable to reduce

the assigned step-length according to the complexity of the curve. loupartbased on the
concept of osculating circle, an inequality constraint is introduced, whiatesothe secant
vector to fall within a prescribed ‘cone of admissible directionseath incremental step.

The main advantage of this strategy is that it naturally leads to a uniformly accurate sampling
of points along the path.

The method’s effectiveness is moreover illustrated through itscapiph to the stability
analysis of complex reticulated systems, such as Schwedler domes andirtteesional
masts. In particular, the influence of different bracing patterns on tpest-critical
behaviour is examined.




1. Introduction

A natural consequence of the economical employment of new higly$trehigh-
performance materials is that contemporary structures arelighter and slenderer. Thus,
dead loads now play a much less important role than in older strycuacetheir stabilising
effects are either vanishing or wholly lacking. Consequently, tettagtures are for the most
part subjected to service and accidental loads whose distributions agmitudes are only
partly predictable. In such circumstances, well-pondered judgemamis structural strength
and stability cannot be advanced without recourse to accurate large displaaeahgsis.
Within an FEM framework, this requires solving the set of non-liegailibrium equations
for the n unknown nodal displacements,,u,,...u,, of the discrete model subjected to

prescribed loads. In the simplest case, these vary in magniuadsibgle scalar multiplied,
so that solutions can be related to the point set of one or more ofithes+1-dimensional

space with co-ordinates,u,,u,,...u, , which constitute thequilibrium path The point 4=0;

u=0) belongs to the path and represents the reference solution. Moré®veurve passing
through it is, by convention, called tpemary branch while other curves, if any, are said to
besecondary branches

Incremental-iterative procedures represent the path as a bralenofli chords, whose
endpoints correspond to consecutive values of the representation pargm&teongst these
procedures, arc-length methods ([1], [2]) are unique in that thegrug@proximation of the
curvilinear abscissa, as the parameter, thus path tracing can continue beyond limit points.
If the main goal of the analysis is to determine the figdufe mode (generally local in
nature), then path tracing may well be limited to a shortaindgrc corresponding to the
beginning stage of the loading process until the first cripocaht (limit or bifurcation) is
encountered. On the other hand, if one is instead interested in findiegubteire’s ultimate
bearing capacity and, possibly, obtaining a better understanditige (fequence of all the
local failure modes which precede final collapse, then tratieg entire path becomes
necessary. In this case, one should remember that, accordingdegtiee of imperfection of
the structural system (geometry and load), equilibrium paths &diwide gamut of post-
critical behaviour, including simple and multiple bifurcation, snappmglti-loops, sharp
turning points and, probably, some other as yet unknown ‘strange’ phenomena.

In the first case, analysis can be carried out until an optiomstantparameter incremes;

is determined, which economically furnishes an accurate estiohdhe sought critical point.

In the second circumstance, however, adopting a constant step-lerygtie inappropriate or
even misleading. In fact, small step-lengths unavoidably lead fficiaet and demanding
computation, whilst large values may cause the algorithm toafang arcs of greater
curvature or in the neighbourhood of a bifurcation. In these cases, failtine afgorithm,

due to undesired jumps, is revealed by sudden direction changes of the tangent to the path.
In [4] we proposed a self-adapting strategy, which uses the cootcegtulating circle to
step-wise find an optimal parameter increment. In particulaupger limit to the change in
angle experienced by the tangent vector at each increnstagalis indirectly imposed by
constraining the secant vector to fall within a prescritmte of admissible directionat any



given step, this cone is placed with its vertex at the lasttést point, its axis coinciding with
the tangent to the path, while its half-cone angle is kept condtangy the entire path. The
cone is defined by an inequality constraint added to the usual s€l efon-linear resolving
equations. When this constraint operates together with the equatisyraint defining the
representation parameter incrememnixjliary equation, it permits unambiguous detection of
the successive point, by performing, where necessary, autonthttion of the step-length
according to the local path curvature.

In this paper, the essentials of the algorithm are given in sotad, ddthough the main
attention is focused on its application in deducing the non-linear resminsemplex
reticulated systems. In particular, cases of Schwedler domes and thegesidimal masts with
different bracing patterns will be presented. An unexpected restittis study is that the
arrangement of secondary diagonal bars, which does not affechdlae ftesponse, instead
proves crucial in defining the non-linear behaviour of such structures.

2. Large displacement analysis of elastic reticulatl systems

The following analysis concerns elastic reticulated systemsgesferal shape under
conservative loading. The mechanical model admits large nodal dis@ate while
deformation in the bars remain small or moderate. Moreover, a Dagedngian formulation
is used throughout.

A system is composed By joints connected to each otherMybars according to an assigned
connectivity matrixB. Joints behave as ideal hinges, while bars are rectilineanadd of a
linear elastic material. Loads, whose magnitudes vary propottiomath the single
parameterAJR , act exclusively upon the joints. Finally, the geometry is descnbdd

reference to a fixed rectangular co-ordinate sysdem, y, z
Let Gy be the configuration of the structure in a stress-free sta® @ssumed as a reference.

In it, the joints occupy positionsX, :[Xl,\(,Z]T, | =12,...N, while the bar which
connects joint$ andJ has lengthL,, and cross-sectional aret, .
When the structure is subjected to the loads

P,=Ap,, 1=12...N, (2)

where eachp, :[px|, By s pz,]T is a nodal reference vector, the configurationnges from
Co to C. Thus, joints undergo the nodal displacementsl =12,...N, and assume the new
positionsx, =X, +u, .
As loads do not depend upon C, the load potentiglgy of the system is defined as
N N (2)
V =V (A;u) :;V' =>'(-4p, @, )=-Ap M,

1=1

where vectorp,udR", n = 3N, collect nodal loads and displacements.



By our initial assumptions, the Green-Lagrangedeasid conjugate second Piola-Kirchhoff
tensor are adopted as measures of strain and, seepsctively. The strain energy for bar
can be expressed in the form

1{U,H D, E—D,J}{ul} (3)
VVIJ = ... et SEERE I ,
2| u, =Dy, i Dy Ju;

le :XJ +]/2uJ_(XI+]/2u|) (4)

where

is the intermediate bar position vectd,; = H,J[dIJ Ddu] IS a 3x3 sub-matrix, and the

constantH,, = E; A,/ L,* groups bar properties.
By summing contributions (3), the strain energyhaf system results to be

W(u) = %u (D(u)u, ©)
where the matriX®(u) JR™" stems from assembling the sub-matri€es.
Finally, by summing (2) and (5), we obtain the eyss total potential energy,
(6)

M(A:u) =W(U) +V (A:u) =%u D(u)u-Ap i,

as a function ofl andu. For assignedi, if the system is to be in equilibrium in C, it is
necessary thdtl(A;u) be stationary with respect to each component Gfonsequently,

I (Au) (7)

=f(A;u) =0,
70 (A;u)

which form a set oh non-linear equations for the unknowasu,,...u,. In (7), f(A;u) is a

vector collecting nodal resultant forces. From {fig balance equations for the genericlBar
can be extracted as

e ARGl

9)

where



This permits system (7) to be written out as

f(A;u) =K (u)u-Ap =0, (10)

whereK (u)JR™" is the secant stiffness matrix of the structure.

Solutions to system (10), corresponding to a cowtisly variabled, furnish theequilibrium
pathof the structure in thd,u,,u,,...u, co-ordinate space.

3. Path tracing via standard arc-length methods

Whatever representation paramepes chosen, it is usually entered byauxiliary equation
of the form

fo(A;u;n) =0, (11)

to be added to the equilibrium equations (10),dyiej theaugmented system

fo(A;u,;m) =0 (12)
f.(Au,) =K; (u,)u; =Ap, =0, i, j,h=12...,n.

Through the following change of variables

ty = HoA (13)
t=u, 1=12...,n,

where 1, 0R" is a scaling factor, the load parametér,and the nodal displacements,
u,,u,,...u., are placed on an equal basis. Thus, tracingdtiegntails solving the system

fo(t;m)=0,  @,B=012..,n (14)

for increasing discrete valueg”,7?,....n®) of the chosen parameter.
At any given steg, corresponding tgy™’, the point locatiort™ and the unit tangent vector

to the patht ™ (where the dot denotes differentiation with res$peche curvilinear abscissa,
) are both known. So, the problem consists of figdhe next point™**? or, alternatively,
the secant vectgrAt™ =t —t® relative to the valug™*™® =™ +An, where A7 is

the assigned increment.
Of the various available forms for equation (11¢, adopt the definition by Crisfield [3]



fo(t;A_ﬂ) - [t(K+1) _ t(K)] 2_ 57 2_ [At(K)] 2_ A_I7 220, (15)

which imposes that the next poitft’*? belong to the sphere of radids7, with centre at
t*). Thus, the parameter increment coincides with legth of the secant vector
A =|at™| Das.

A predictor-corrector scheme is then applied tdesys(14) to findAt™) . In particular, the
first estimate is given by the linear predictor

A0 =Apt (), (16)

while improved estimateAt*, At®? ... At"") are obtained by consecutive iterations.
At cycleH, the Newton-Raphson method furnishes the updateshs vector

o™ kH T
(KH+1) — A (KH) _ (K+LH).
Aty =4t [';"5 TR, [u®) f( 1)
LT
(KH+LD) _— 4$(KH+L) _ 4 (K) —
At =t t -AqHAt(DK—Hm
0

where K ; (u) =2f(A;u)/dulR™ is the tangent stiffness matrix of the structaral the
obtained secant vectoft ™", is further scaled to fit the spherical constrgirs).

lterations are continued untom“"””’ —At(K'H)H/E] is smaller than a given dimensionless

toleranceTOL. At convergence, the unit tangent vectdf™ , is found from the system

{ @y } g
—p | K, [u®?)
t (K+1) (18)

t(K+1): 0

. (K+1)
tD

where g, is the first unit vector of the canonical basis Rf", and the obtained tangent

vector, t ¥ is further scaled to the unit norm.



4. The cone of admissible directions

Large displacement analysis of real structuralesystinevitably leads to trace equilibrium

paths, which at first sight may appear very tangled endowed with seemingly inextricable
knots. Some typical examples will be presented Iratwfollows. Their tracing was made

possible by virtue of a self-adapting strategy atdecorrect the parameter increment
according to the complexity of the curve. The badéa of the strategy consists of setting an
upper limit to the change in angle experienced liy tinit tangent vector within each

incremental step. The concept of osculating ciisleused to this end, so the resulting
algorithm integrates well with standard arc-lengibthods.

4.1. Basic idea and definition

Figure 1(a) shows two pointg™ and t**Y, on the equilibrium path relative to two
consecutive incremental steps, as well as the sporeling unit tangent vectors® and
t “*9 the unit principal normal vecton® and the osculating circlé © at t*), whose

radius is o™ . If points t*) and t***" are sufficiently near each other, the path segment
connecting them is indistinguishable from a smadlaf .

n(K)A _ (K.H) Osculating
Osculating - nv circle I
™~ circler® 7
(K,H)
A} Lo
K) K) K,H) ®
p 20 Je .
t >
N7 N > t‘(K)
(K) (K)
t t o
Cone of admissible
directions
(]
...
.'1
(@) (b)

Figure 1: The cone of admissible directions

A simple geometric argument demonstrates that tiggesformed byt ) andt < is twice

the angle,@™ , betweent “ and At . Hence, limiting the angle change experienced by
during the incremental stépis equivalent to imposing the following inequaldynstraint



#<gp, (19)
which defines theone of admissible directionwithin which the secant vectoAt™ , must
fall. This cone has vertex at<’, axist ) and constant half-cone angfe(Figure 1(b)).

4.2. Implementation

At the end of iterative cycléd, the angle between the currently evaluated secactor,

At™™ and the known unit tangent vectof’, is given by

Cow(KvH) _ At(K,H) [ﬂ (K) (20)
o]
When ¢*") > @ | the current step-lengthn™® ") is reduced to
A (K,H+1) — Slna HAt(K'H)H (21)
g singt*™ ’
and the new corrector
(22)

AtEHD = g p(KH (sinq?n (KH)+ cospt ‘K)j

is obtained, wheren®®") is the unit principal normal vector at*) evaluated at cyclé.

Equation (22) defines the secant vector as thainjgipoint t®) to the point where the cone
of admissible directions intersects the osculatingje.

By projecting At on the plane perpendicular t&§ , we obtain

TR (et S A ) VN L C A BN A (23)
n“t = =

_ - (K)
, , =— Gom ~cotgt
(1 -t ©nt eypgem| - singac ]

wherel is the identity tensor. Finally, by combining etjaas (22) and (23), the expression
for the corrector results to be

L2 : H) _ > 24
At (KHD) :[ sing j AtKH) 4 p KD sin@“" - ) GN (24)

sing"™ sing™



4.3. Computational aspects

In assigning specific values to the parameﬂysand & one must consider that they are not
independent of each other. In fact, tracing acoun be assumed to be the reciprocal of
5:]/257 tang, which gives an estimate of the maximum distamoefthe broken line of
chords to the equilibrium path. Consequently, iteorto achieve the desired accuracy, either
E] or q_o can be assigned small values. However, when dgealith ‘perfect’ or ‘quasi-

perfect’ reticulated systems, the limitation on émgle change must be made more severe, so
that the algorithm will be effective in criticaksations as well.
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Figure 2: A perfect system and its path

In fact, in the case of a perfect system (Figu)2the equilibrium path consists of one or
more smooth curves, the primary and secondary besnchat intersect each other at
bifurcation points (Figure 2(b)). Difficulties inath tracing stem mainly from secondary
branches, whose number and location are unkreopniori. Thus, it is always possible for the
algorithm to jJump onto a different branch in theghdourhood of an unexpected bifurcation.

In order to avoid such an eventuality, small valoésp are recommended because the

constraint onA7z turns out to be ineffective for this purpose.

Likewise, when dealing with a quasi-perfect sys{€igure 3(a)), we should consider it to be
derived from a perfect one, in which the geometrynechanical properties or, lastly, applied
loads have been changed by some small but nongitdglimperfections capable of breaking
the system’s symmetry in a barely perceptible widyerefore, its equilibrium path (Figure
3(b)) is composed of one or more curves windingugh space, keeping as close as possible

to the path of the perfect system it derives framthis case as well, small values pfare to
be used, since the constraint Am alone does not permit accurately describing ttaelHo



deflection response in the neighbourhood of shawrgrig points.
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Figure 3: A quasi-perfect system and its path
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Figure 4: Tracing the path of a quasi-perfect system

For the sake of comparison, Figure 4 shows howaradsird procedure and the proposed
method behave in tracing the equilibrium path & s#ame quasi-perfect system containing
sharp turning points. Figure 4(a) shows the resofltshe constant step-length procedure,
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where an erroneous tracing occurs due to undesinegs. Figure 4(b) instead presents a path
detail in the neighbourhood of the turning pointnfghed by the proposed strategy, in which
the finer sampling of points is evident.

Finally, the case of ‘imperfect’ reticulated syste(figure 5(a)) proves to be the simplest to
deal with, since turning points are usually smaatd no bifurcation is present (Figure 5(b)).

Although the constraint oZtT] alone generally works, a moderately small valug@afan be
used to achieve uniform accuracy in tracing.
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Figure 5: An imperfect system and its path

5. Applications

The described strategy is first applied hereinh® s$tability analysis of a perfect 39 DOF
Schwedler dome subjected to a vertical load onpfger joint. Two different bracing schemes
are considered one after the other, and their tsftat the primary branch are compared.
Next, the post-critical behaviour of a 75 DOF mswbjected simultaneously to vertical and
horizontal loads on its upper joint is analysedc@®©nagain, the effects of different bracing
schemes are examined. This same structure, thaugbcsed to a vertical load alone, has
already been considered by Wriggetsl.[5] in testing a procedure for direct computatain
stability points. Here, by gradually modifying thatio of horizontal to vertical loads, we
modify the character of the reticulated system franperfect to an imperfect one, thus
allowing a wide range of different responses torgme
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5.1. A spirally braced Schwedler dome

A hemispherical Schwedler dome of radius Bdis depicted in Figure 6. The structure is
made up of 19 joints (6 of which are fixed), corteedo each other by 42 active bars of equal

extensional stiffnessEA=2010° daN, though different in length. We presume that the

cladding panels do not perform any static function.
A vertical load of magnitudd®, = A p, = A[5000daN acts upon the upper joint. Since the
diagonal bars are arranged in a fashion resembliggiral, the system possesses a six-fold

rotational symmetry about tlzeaxis.
In keeping with the aforesaid considerations, a lisnaalue of the half-cone angle

@=005rad was used together with a step-lengty =25cm. The assumed scaling
parameter wag/, =1cm and the toleranc€OL=10"°.

~

150 cn

129.9 cn

_75cm | 75cm_
_ 129.9 cm 1299cm
pE 150 cm 150 cm =

(a) (b)
Figure 6: Spirally braced Schwedler dome — Geometry

Figure 7 shows the primary branch of the equililoripath as furnished by the admissible
directions cone method projected onto the planeAQOw;, where w; is the vertical
displacement of the top joint. This branch woulahstdute the load-deflection response if
both the load and displacements were simultaneocshyrolled. If, instead, the process
occurs under load control alone, then the actusdarse reduces to its portion, OABCDEF,
which appears in red in the figure. By examining siequence of deformed configurations, it
turns out that the continuous arcs correspond agest of simultaneous ‘spinning’ and
‘lowering’ of the entire structure, while the dadHmes express dynamic snapping.

Structural behaviour is complicated only in appeeea In fact, if we idealise the dome as
being made up of three superimposed layers joioexhth other by two coaxial hexagons of
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bars, then the structure can be viewed as a sisgiies system. The particular bracing
arrangement forces each layer to rotate about ¢nemmon z-axis, so the global structural
response is that of a spinning top.

A noteworthy non-linearity in the load-deflectiomsponse appears right from the start of the
loading process, OA. The upper joint snaps upoahiag the limit point A,A = 4.536, when

the structure’s overall rotation is still moderafdter the second spinning phase, BC, the
upper hexagon snaps at C, whérr 46.238. Next, a stage of large spinning, DE, precedes
the snapping of the lower hexagon at E, wien135020. Finally, at F the structure reaches
a configuration that is nearly opposite the origmae, O.
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Figure 7: Spirally braced Schwedler dome — Primary branch — Joint 1

Figures 8(a) and 8(b) show the same primary bramaiected onto the planes @, u,, and
0, A, v,, respectively, where, andv, are the horizontal displacement components ofrd jo
on the upper hexagon.
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Figure 8: Spirally braced Schwedler dome — Primary branch — Joint 2

5.2. A symmetrically braced Schwedler dome

Figure 9 considers the previous hemispherical Sdrewedome with a different bracing
pattern. Here, secondary diagonal bars are arramgedich a way as to oppose possible
rotations about the-axis. The system still possesses three-fold mtati symmetry. The

valuesp= 005rad and Az =25cm were adopted, together wifl, =1cm and TOL=10"°.

Figure 10 shows the primary branch of the equilitoripath projected onto the plane Dw;.
Actually, the path looks like a very complicatedwai Nevertheless, if one is interested in
determining the structural behaviour under loadrnthen the actual response reduces once
again to the simpler part, OABCDEF, which appearsed. Continuous arcs correspond to
the stages of lowering alone where elastic enesgyared. This is later released in part during
the dynamic snapping phases, represented by thedises.

Contrary to linear analysis, comparison of Figufeend 10 clearly reveals how modification
of the bracing scheme can cause strong variatiotiginon-linear response of the structure.
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Figure 9: Symmetrically braced Schwedler dome — Geometry

The upper joint snaps upon reaching the limit pdntSince this local failure mode is
insensitive to changes made in the bracing schemeefound a load multiplier value,

A =4569, that is practically unchanged with respect to ghevious case. After the second
phase of energy storage, BC, the upper hexagors @tap, whemnd =34.640. In this case,
due to the three-fold symmetry, the joints of tipper hexagon possess a different stiffness,
so that they undergo out-of-plane displacementsltefnating sign, and the hexagon warps
before it snaps. Finally, a last storing phase, prEcedes the snapping of the lower hexagon
at E, whenA =267.425. This value is nearly twice that found for therafpy braced case.

5.3. A spirally braced mast

Figure 12(0O) shows the reference configuration h&f three-dimensional mast previously
considered by Wriggerst al. in [5]. Its gross dimensions arend x 7 m (basis) x 35m
(height). Further details can be found in the cjtager. Again, the structure is made up of 29
joints, 4 of which are fixed, connected one to tiker by 79 bars of equal extensional
stiffness, EA= 6.3[10° daN, but different in length. Secondary bars are ayeanto resemble

a spiral, so that the structure possesses fourddédional symmetry about tlzeaxis.

In [5], a vertical load of magnitud®, = A p, = A[5000daN was considered to act upon the
top joint, so the resulting reticulated system lvekaas a perfect one. Non-linear buckling
analysis was performed, and a multiple bifurcapomt was detected for the load parameter
A =1384. Here, the system symmetry is instead broken leyattidition of a disturbing
horizontal load,P, = A p,, so that the structural behaviour can be gradwaiwerted from
that of a quasi-perfect system to that of an ingmtrbne.
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Figure 10: Symmetrically braced Schwedler dome — Equilibrium path — Joint 1

16

50



Displacementu ; [m]

Displacementu 4 [m]
0 2 4 6 8 10

Load multiplier A
Displacementv ; [m]

-12

-14

P x/p; O] emmOmms/10 emmOmms /100 e=sOmms /100 Qam=Omm» 1/1000( P x/p 7 Se=Om=n] emOmms]/](emsOmms]/]00 e==Omms] /1000 e=sOum»/1000(

(a) (b)
Figure 11: Spirally braced mast — Equilibrium path — Joint 1

Figures 11(a) and 11(b) show two different viewshef primary branch relative to the load
ratio values,p, / p,, presented in Table 1. The same table also repoetangleg, and the
limit load multiplier, A,. A step-length An=2m was used for the analyses, with
U, =1cm andTOL=10"°.

P,/ p, 1/1 1/10 1/100 1/1000 1/10000
(_0 0.15 0.10 0.10 0.05 0.05
A 3.930 10.222 12.971 13.644 13.972

Table 1: Load ratio, half-cone angle and limit load multiplier forsthieally braced mast

A better understanding of structural behaviour banachieved if we think of the mast as
composed of seven superimposed substructures jomedch other by six groups of bars
placed along the edges of coaxial squares. Adaitibars stiffen three of these squares. With
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this in mind, the structural behaviour reducesht bf a series system. If only a vertical load
acts, the bracing arrangement forces each layeotade about the-axis, and the global
response is again characterised by a sequenceirofirgp phases. Overall lateral bending
starts when the bifurcation is reached and devdiafsving a secondary branch. Instead, in
the presence of a disturbing horizontal load, tegural behaviour appears right from the
beginning of the loading process, and developsgalbe primary branch.

Figure 12 shows the sequence of equilibrium comfijons for the load ratio
p,. / p, =1/10000. During the initial phase OA, spinning prevails bending and the top

joint undergoes almost only vertical displacemem{s.the turning point A, a plane of
minimum bending stiffness emerges and the masnbegibend following the arc AB. At B,

a second turning point is encountered, which datersna dramatic decrease in stiffness along
the arc BC, interpretable assaap-back This loss of stiffness is due to the formationaof
cylindrical hinge between the third and fourth lsyeHere, due to the absence of any
horizontal stiffening, the bars of the interposgdage fall into a common line. This evidently
constitutes the Achilles’ heel of the reticulatgdtem. Afterwards, the structure transforms
into a mechanism no longer able to sustain anyiegpbads. The upper layers experience an
approximately rigid body rotation, CD, which progses until ultimate failure near E.

Figure 12: Spirally braced mast with, / p, =1/10000 - Configurations sequence

5.4. A symmetrically braced mast

In analogy to the treatment of the domes, a diffebeacing scheme is also considered. Here,
secondary bars are arranged in such a way as wse@my possible rotations about the
axis. The structure possesses two-fold rotatioyrainsetry. As before, a disturbing horizontal

load, P, = A p,, is added to the vertical loa&, = A p, = A[5000daN .
Figures 13(a) and 13(b) show two different viewshef primary branch relative to the load
ratio values,p, / p,, indicated in Table 2. The same table also repie angleg, and the
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limit load multiplier, A__ . A step-length ofA7=2m was used for the analyses, with
U, =1cm andTOL =107,

Displacementu ; [m] Displacementu ; [m]
0 2 4 6 8 10 0 2 4 6 8 10
14

12 4

10

Load multiplier A
Displacementv ; [m]

)

P x/p; e=Cmm] emsOmm]/10 emOmms /100 essOmms] /100 OemmOmm 1/1000( P x/p 7 Se=Om—| emmOmm /10 esmOmm 1 /100 essOmms 1 /1000 essOumms 1/1000(

(a) (b)
Figure 13: Symmetrically braced mast — Equilibrium path — Joint 1

Figure 14 represents the sequence of configuraatogy the equilibrium path obtained for
the load ratiop, / p, =1/ 10000Again, the weakest point of the structure is ledaat the
interface between the third and fourth layers, wheecylindrical hinge forms. Regarding the

description of the post-critical behaviour, consai®ns similar to those for the spirally
braced case apply.

Py / P, 1/1 1/10 1/100 1/1000 1/10000
a, 0.025 0.05 0.05 0.025 0.025
Ao 2.484 8.172 11.661 12.598 12.930

Table 2: Load ratio, half-cone angle and limit loads for the symmiggrimaced mast
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Figure 14: Symmetrically braced mast with, / p, =1/10000 - Configurations sequence

0. Conclusion

A strategy for uniformly accurate tracing of theusiprium paths of elastic reticulated

structures subject to conservative proportionatisoaas applied to the stability analysis of
two classes of Schwedler domes and three-dimersiwensts with different bracing schemes.

The strategy proves capable of highly accuratengacf complex tangled equilibrium paths
endowed with nearly inextricable knots and sharpitg points.
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