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Abstract.   Standard arc-length methods, which use a constant step-length, may encounter 
serious difficulties when tracing the equilibrium paths of ‘perfect’ or ‘quasi-perfect’ 
structural systems. In these cases, in the neighbourhood of bifurcation or sharp turning 
points, erroneous jumps of the algorithm onto different branches are always possible. 
These drawbacks can be efficiently overcome by using a self-adapting strategy able to reduce 
the assigned step-length according to the complexity of the curve. In particular, based on the 
concept of osculating circle, an inequality constraint is introduced, which forces the secant 
vector to fall within a prescribed ‘cone of admissible directions’ at each incremental step. 
The main advantage of this strategy is that it naturally leads to a uniformly accurate sampling 
of points along the path. 
The method’s effectiveness is moreover illustrated through its application to the stability 
analysis of complex reticulated systems, such as Schwedler domes and three-dimensional 
masts. In particular, the influence of different bracing patterns on their post-critical 
behaviour is examined. 
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1. Introduction 

A natural consequence of the economical employment of new high-strength, high-
performance materials is that contemporary structures are ever lighter and slenderer. Thus, 
dead loads now play a much less important role than in older structures, and their stabilising 
effects are either vanishing or wholly lacking. Consequently, today structures are for the most 
part subjected to service and accidental loads whose distributions and magnitudes are only 
partly predictable. In such circumstances, well-pondered judgements about structural strength 
and stability cannot be advanced without recourse to accurate large displacement analysis. 
Within an FEM framework, this requires solving the set of non-linear equilibrium equations 
for the n unknown nodal displacements, nuuu K,, 21 , of the discrete model subjected to 

prescribed loads. In the simplest case, these vary in magnitude by a single scalar multiplier, λ, 
so that solutions can be related to the point set of one or more curves of the n+1-dimensional 
space with co-ordinates nuuu K,,, 21λ , which constitute the equilibrium path. The point (λ=0; 

u=0) belongs to the path and represents the reference solution. Moreover, the curve passing 
through it is, by convention, called the primary branch, while other curves, if any, are said to 
be secondary branches. 
Incremental-iterative procedures represent the path as a broken line of chords, whose 
endpoints correspond to consecutive values of the representation parameter, η. Amongst these 
procedures, arc-length methods ([1], [2]) are unique in that they use an approximation of the 
curvilinear abscissa, s, as the parameter, thus path tracing can continue beyond limit points. 
If the main goal of the analysis is to determine the first failure mode (generally local in 
nature), then path tracing may well be limited to a short initial arc corresponding to the 
beginning stage of the loading process until the first critical point (limit or bifurcation) is 
encountered. On the other hand, if one is instead interested in finding the structure’s ultimate 
bearing capacity and, possibly, obtaining a better understanding of the sequence of all the 
local failure modes which precede final collapse, then tracing the entire path becomes 
necessary. In this case, one should remember that, according to the degree of imperfection of 
the structural system (geometry and load), equilibrium paths exhibit a wide gamut of post-
critical behaviour, including simple and multiple bifurcation, snapping, multi-loops, sharp 
turning points and, probably, some other as yet unknown ‘strange’ phenomena. 

In the first case, analysis can be carried out until an optimal constant parameter increment η∆  
is determined, which economically furnishes an accurate estimate of the sought critical point. 
In the second circumstance, however, adopting a constant step-length may be inappropriate or 
even misleading. In fact, small step-lengths unavoidably lead to inefficient and demanding 
computation, whilst large values may cause the algorithm to fail along arcs of greater 
curvature or in the neighbourhood of a bifurcation. In these cases, failure of the algorithm, 
due to undesired jumps, is revealed by sudden direction changes of the tangent to the path. 
In [4] we proposed a self-adapting strategy, which uses the concept of osculating circle to 
step-wise find an optimal parameter increment. In particular, an upper limit to the change in 
angle experienced by the tangent vector at each incremental step is indirectly imposed by 
constraining the secant vector to fall within a prescribed cone of admissible directions. At any 
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given step, this cone is placed with its vertex at the last detected point, its axis coinciding with 
the tangent to the path, while its half-cone angle is kept constant along the entire path. The 
cone is defined by an inequality constraint added to the usual set of n+1 non-linear resolving 
equations. When this constraint operates together with the equality constraint defining the 
representation parameter increment (auxiliary equation), it permits unambiguous detection of 
the successive point, by performing, where necessary, automatic reduction of the step-length 
according to the local path curvature. 
In this paper, the essentials of the algorithm are given in some detail, although the main 
attention is focused on its application in deducing the non-linear response of complex 
reticulated systems. In particular, cases of Schwedler domes and three-dimensional masts with 
different bracing patterns will be presented. An unexpected result of this study is that the 
arrangement of secondary diagonal bars, which does not affect the linear response, instead 
proves crucial in defining the non-linear behaviour of such structures. 

2. Large displacement analysis of elastic reticulated systems 

The following analysis concerns elastic reticulated systems of general shape under 
conservative loading. The mechanical model admits large nodal displacements, while 
deformation in the bars remain small or moderate. Moreover, a Total Lagrangian formulation 
is used throughout. 
A system is composed by N joints connected to each other by M bars according to an assigned 
connectivity matrix, B. Joints behave as ideal hinges, while bars are rectilinear and made of a 
linear elastic material. Loads, whose magnitudes vary proportionally with the single 
parameter R∈λ , act exclusively upon the joints. Finally, the geometry is described with 
reference to a fixed rectangular co-ordinate system O, x, y, z. 
Let C0 be the configuration of the structure in a stress-free state (λ=0) assumed as a reference. 

In it, the joints occupy positions [ ]X
T

I I I IX Y Z= , , , NI K,2,1= , while the bar which 

connects joints I and J has length LIJ  and cross-sectional area IJA . 

When the structure is subjected to the loads 

NIII K,2,1, == pP λ , (1) 

where each [ ]p
T

I XI YI ZIp p p= , ,  is a nodal reference vector, the configuration changes from 

C0 to C. Thus, joints undergo the nodal displacements Iu , NI K,2,1= , and assume the new 

positions III uXx += . 
As loads do not depend upon C, the load potential energy of the system is defined as 

( ) upupu ⋅−=⋅−=== ∑∑
==

λλλ
N

I
II

N

I
IVVV

11

);( , 
(2) 

where vectors nR∈up, , n = 3N, collect nodal loads and displacements. 
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By our initial assumptions, the Green-Lagrange tensor and conjugate second Piola-Kirchhoff 
tensor are adopted as measures of strain and stress, respectively. The strain energy for bar IJ 
can be expressed in the form 
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(3) 

where 

)21(21 IIJJIJ uXuXd +−+=  (4) 

is the intermediate bar position vector, [ ]D d dIJ IJ IJ IJH= ⊗  is a 3 3×  sub-matrix, and the 

constant H E A LIJ IJ IJ IJ= 3  groups bar properties. 
By summing contributions (3), the strain energy of the system results to be 

uuDuu )(
2

1
)( ⋅=W , 

(5) 

where the matrix nn×∈R)(uD  stems from assembling the sub-matrices D IJ . 
Finally, by summing (2) and (5), we obtain the system’s total potential energy,  

upuuDuuuu ⋅−⋅=+=Π λλλ )(
2

1
);()();( VW , 

(6) 

as a function of λ and u. For assigned λ, if the system is to be in equilibrium in C, it is 
necessary that );( uλΠ  be stationary with respect to each component of u. Consequently, 

0uf
u

u ==Π
);(

);( λ
∂

λ∂
, 

(7) 

which form a set of n non-linear equations for the unknowns nuuu K,, 21 . In (7), );( uf λ  is a 

vector collecting nodal resultant forces. From (7), the balance equations for the generic bar IJ 
can be extracted as 
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where 

( ) IJIJIJIJIJ H duuDK ⊗−+=
2

1
. 

(9) 
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This permits system (7) to be written out as 

0puuKuf =−= λλ )();( , (10) 

where nn×∈R)(uK  is the secant stiffness matrix of the structure. 

Solutions to system (10), corresponding to a continuously variable λ, furnish the equilibrium 
path of the structure in the nuuu K,,, 21λ  co-ordinate space. 

3. Path tracing via standard arc-length methods 

Whatever representation parameter η is chosen, it is usually entered by an auxiliary equation 
of the form 

0);;(0 =ηλ uf , (11) 

to be added to the equilibrium equations (10), yielding the augmented system 
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(12) 

Through the following change of variables 
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(13) 

where +∈R0µ  is a scaling factor, the load parameter, λ, and the nodal displacements, 

nuuu K,, 21 , are placed on an equal basis. Thus, tracing the path entails solving the system 

ntf ,,2,1,0,,0);( K== βαηβα  (14) 

for increasing discrete values )()2()1( ,,, Kηηη K  of the chosen parameter. 

At any given step K, corresponding to )(Kη , the point location t ( )K  and the unit tangent vector 

to the path t
.

( )K  (where the dot denotes differentiation with respect to the curvilinear abscissa, 

s) are both known. So, the problem consists of finding the next point t ( )K +1  or, alternatively, 

the secant vector, ∆t t t( ) ( ) ( )K K K= −+1 , relative to the value ηηη ∆+=+ )()1( KK , where η∆  is 
the assigned increment. 
Of the various available forms for equation (11), we adopt the definition by Crisfield [3] 
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[ ] [ ] 0);( 22)(22)()1(
0 =∆−∆=∆−−=∆ + ηηη KKKf tttt , (15) 

which imposes that the next point t ( )K +1  belong to the sphere of radius η∆ , with centre at 

t ( )K . Thus, the parameter increment coincides with the length of the secant vector 

sK ∆≅∆=∆ )(tη . 

A predictor-corrector scheme is then applied to system (14) to find ∆t ( )K . In particular, the 
first estimate is given by the linear predictor 

)()0,( KK
.

tt η∆=∆ , 
(16) 

while improved estimates ∆t ( ,K 1) , ∆t ( , )K 2 ,... ∆t ( , )K H  are obtained by consecutive iterations. 
At cycle H, the Newton-Raphson method furnishes the updated secant vector 
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(17) 

where nn×∈= RuufuK T ∂λ∂ );()(  is the tangent stiffness matrix of the structure and the 

obtained secant vector, )1,( +
∗∆ HKt , is further scaled to fit the spherical constraint (15). 

Iterations are continued until η∆∆−∆ + ),()1,( HKHK tt  is smaller than a given dimensionless 

tolerance, TOL. At convergence, the unit tangent vector, t
.

( )K+1 , is found from the system 
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(18) 

where e0  is the first unit vector of the canonical basis of 1+nR , and the obtained tangent 

vector, )1( +
∗
K

.

t , is further scaled to the unit norm. 
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4. The cone of admissible directions 

Large displacement analysis of real structural systems inevitably leads to trace equilibrium 
paths, which at first sight may appear very tangled and endowed with seemingly inextricable 
knots. Some typical examples will be presented in what follows. Their tracing was made 
possible by virtue of a self-adapting strategy able to correct the parameter increment 
according to the complexity of the curve. The basic idea of the strategy consists of setting an 
upper limit to the change in angle experienced by the unit tangent vector within each 
incremental step. The concept of osculating circle is used to this end, so the resulting 
algorithm integrates well with standard arc-length methods. 

4.1. Basic idea and definition 

Figure 1(a) shows two points, t ( )K  and t ( )K +1 , on the equilibrium path relative to two 

consecutive incremental steps, as well as the corresponding unit tangent vectors, t
.

( )K  and 

t
.

( )K +1 , the unit principal normal vector n( )K  and the osculating circle Γ ( )K  at t ( )K , whose 

radius is )(Kρ . If points t ( )K  and t ( )K +1  are sufficiently near each other, the path segment 

connecting them is indistinguishable from a small arc of Γ ( )K . 
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(b) 

Figure 1: The cone of admissible directions 

A simple geometric argument demonstrates that the angle formed by t
.

( )K  and t
.

( )K +1  is twice 

the angle, )(Kφ , between t
.

( )K  and ∆t ( )K . Hence, limiting the angle change experienced by t
.

 
during the incremental step K is equivalent to imposing the following inequality constraint 



 8

φφ ≤)(K , (19) 

which defines the cone of admissible directions, within which the secant vector, ∆t ( )K , must 

fall. This cone has vertex at t ( )K , axis t
.

( )K  and constant half-cone angle φ  (Figure 1(b)). 

4.2. Implementation 

At the end of iterative cycle H, the angle between the currently evaluated secant vector, 

∆t ( , )K H , and the known unit tangent vector, t
.

( )K , is given by 
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(20) 

When φφ >),( HK , the current step-length ),( HKη∆  is reduced to 
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and the new corrector 
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is obtained, where n( , )K H  is the unit principal normal vector at t ( )K  evaluated at cycle H. 
Equation (22) defines the secant vector as that joining point t ( )K  to the point where the cone 
of admissible directions intersects the osculating circle. 

By projecting ∆t ( , )K H  on the plane perpendicular to t
.

( )K , we obtain 
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where I  is the identity tensor. Finally, by combining equations (22) and (23), the expression 
for the corrector results to be 
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4.3. Computational aspects 

In assigning specific values to the parameters η∆  and φ , one must consider that they are not 
independent of each other. In fact, tracing accuracy can be assumed to be the reciprocal of 

φηδ tan21 ∆= , which gives an estimate of the maximum distance from the broken line of 
chords to the equilibrium path. Consequently, in order to achieve the desired accuracy, either 

η∆  or φ  can be assigned small values. However, when dealing with ‘perfect’ or ‘quasi-
perfect’ reticulated systems, the limitation on the angle change must be made more severe, so 
that the algorithm will be effective in critical situations as well. 
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(b) 

Figure 2: A perfect system and its path 

In fact, in the case of a perfect system (Figure 2(a)), the equilibrium path consists of one or 
more smooth curves, the primary and secondary branches that intersect each other at 
bifurcation points (Figure 2(b)). Difficulties in path tracing stem mainly from secondary 
branches, whose number and location are unknown a priori. Thus, it is always possible for the 
algorithm to jump onto a different branch in the neighbourhood of an unexpected bifurcation. 

In order to avoid such an eventuality, small values of φ  are recommended because the 

constraint on η∆  turns out to be ineffective for this purpose. 
Likewise, when dealing with a quasi-perfect system (Figure 3(a)), we should consider it to be 
derived from a perfect one, in which the geometry or mechanical properties or, lastly, applied 
loads have been changed by some small but non-negligible imperfections capable of breaking 
the system’s symmetry in a barely perceptible way. Therefore, its equilibrium path (Figure 
3(b)) is composed of one or more curves winding through space, keeping as close as possible 

to the path of the perfect system it derives from. In this case as well, small values of φ  are to 

be used, since the constraint on η∆  alone does not permit accurately describing the load-
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deflection response in the neighbourhood of sharp turning points. 
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Figure 3: A quasi-perfect system and its path 
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(b) 

Figure 4: Tracing the path of a quasi-perfect system 

For the sake of comparison, Figure 4 shows how a standard procedure and the proposed 
method behave in tracing the equilibrium path of the same quasi-perfect system containing 
sharp turning points. Figure 4(a) shows the results of the constant step-length procedure, 
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where an erroneous tracing occurs due to undesired jumps. Figure 4(b) instead presents a path 
detail in the neighbourhood of the turning point furnished by the proposed strategy, in which 
the finer sampling of points is evident. 
Finally, the case of ‘imperfect’ reticulated systems (Figure 5(a)) proves to be the simplest to 
deal with, since turning points are usually smooth and no bifurcation is present (Figure 5(b)). 

Although the constraint on η∆  alone generally works, a moderately small value of φ  can be 
used to achieve uniform accuracy in tracing. 
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Figure 5: An imperfect system and its path 

5. Applications 

The described strategy is first applied herein to the stability analysis of a perfect 39 DOF 
Schwedler dome subjected to a vertical load on its upper joint. Two different bracing schemes 
are considered one after the other, and their effects on the primary branch are compared. 
Next, the post-critical behaviour of a 75 DOF mast subjected simultaneously to vertical and 
horizontal loads on its upper joint is analysed. Once again, the effects of different bracing 
schemes are examined. This same structure, though subjected to a vertical load alone, has 
already been considered by Wriggers et al. [5] in testing a procedure for direct computation of 
stability points. Here, by gradually modifying the ratio of horizontal to vertical loads, we 
modify the character of the reticulated system from a perfect to an imperfect one, thus 
allowing a wide range of different responses to emerge. 
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5.1. A spirally braced Schwedler dome 

A hemispherical Schwedler dome of radius 150 cm is depicted in Figure 6. The structure is 
made up of 19 joints (6 of which are fixed), connected to each other by 42 active bars of equal 
extensional stiffness, daNEA 6102⋅= , though different in length. We presume that the 
cladding panels do not perform any static function. 
A vertical load of magnitude daNpP ZZ 5000⋅== λλ  acts upon the upper joint. Since the 
diagonal bars are arranged in a fashion resembling a spiral, the system possesses a six-fold 
rotational symmetry about the z-axis. 
In keeping with the aforesaid considerations, a small value of the half-cone angle 

rad05.0=φ  was used together with a step-length cm25=∆η . The assumed scaling 

parameter was cm10 =µ  and the tolerance 610−=TOL . 
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(b) 

Figure 6: Spirally braced Schwedler dome – Geometry 

Figure 7 shows the primary branch of the equilibrium path as furnished by the admissible 
directions cone method projected onto the plane O, λ, w1, where w1 is the vertical 
displacement of the top joint. This branch would constitute the load-deflection response if 
both the load and displacements were simultaneously controlled. If, instead, the process 
occurs under load control alone, then the actual response reduces to its portion, OABCDEF, 
which appears in red in the figure. By examining the sequence of deformed configurations, it 
turns out that the continuous arcs correspond to stages of simultaneous ‘spinning’ and 
‘lowering’ of the entire structure, while the dashed lines express dynamic snapping. 
Structural behaviour is complicated only in appearance. In fact, if we idealise the dome as 
being made up of three superimposed layers joined to each other by two coaxial hexagons of 
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bars, then the structure can be viewed as a simple series system. The particular bracing 
arrangement forces each layer to rotate about the common z-axis, so the global structural 
response is that of a spinning top. 
A noteworthy non-linearity in the load-deflection response appears right from the start of the 
loading process, OA. The upper joint snaps upon reaching the limit point A, 536.4=λ , when 
the structure’s overall rotation is still moderate. After the second spinning phase, BC, the 
upper hexagon snaps at C, when 238.46=λ . Next, a stage of large spinning, DE, precedes 
the snapping of the lower hexagon at E, when 020.135=λ . Finally, at F the structure reaches 
a configuration that is nearly opposite the original one, O. 
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Figure 7: Spirally braced Schwedler dome – Primary branch – Joint 1 

Figures 8(a) and 8(b) show the same primary branch, projected onto the planes O, λ, u2, and 
O, λ, v2, respectively, where u2 and v2 are the horizontal displacement components of a joint 
on the upper hexagon. 
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Figure 8: Spirally braced Schwedler dome – Primary branch – Joint 2 

5.2. A symmetrically braced Schwedler dome 

Figure 9 considers the previous hemispherical Schwedler dome with a different bracing 
pattern. Here, secondary diagonal bars are arranged in such a way as to oppose possible 
rotations about the z-axis. The system still possesses three-fold rotational symmetry. The 

values rad05.0=φ  and cm25=∆η  were adopted, together with cm10 =µ  and 610−=TOL . 

Figure 10 shows the primary branch of the equilibrium path projected onto the plane O, λ, w1. 
Actually, the path looks like a very complicated curve. Nevertheless, if one is interested in 
determining the structural behaviour under load control, then the actual response reduces once 
again to the simpler part, OABCDEF, which appears in red. Continuous arcs correspond to 
the stages of lowering alone where elastic energy is stored. This is later released in part during 
the dynamic snapping phases, represented by the dashed lines. 
Contrary to linear analysis, comparison of Figures 7 and 10 clearly reveals how modification 
of the bracing scheme can cause strong variations in the non-linear response of the structure. 
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Figure 9: Symmetrically braced Schwedler dome – Geometry 

The upper joint snaps upon reaching the limit point A. Since this local failure mode is 
insensitive to changes made in the bracing scheme, we found a load multiplier value, 

569.4=λ , that is practically unchanged with respect to the previous case. After the second 
phase of energy storage, BC, the upper hexagon snaps at C, when 640.34=λ . In this case, 
due to the three-fold symmetry, the joints of the upper hexagon possess a different stiffness, 
so that they undergo out-of-plane displacements of alternating sign, and the hexagon warps 
before it snaps. Finally, a last storing phase, DE, precedes the snapping of the lower hexagon 
at E, when 425.267=λ . This value is nearly twice that found for the spirally braced case. 

5.3. A spirally braced mast 

Figure 12(O) shows the reference configuration of the three-dimensional mast previously 
considered by Wriggers et al. in [5]. Its gross dimensions are 7 m x 7 m (basis) x 35 m 
(height). Further details can be found in the cited paper. Again, the structure is made up of 29 
joints, 4 of which are fixed, connected one to the other by 79 bars of equal extensional 
stiffness, daNEA 6103.6 ⋅= , but different in length. Secondary bars are arranged to resemble 
a spiral, so that the structure possesses four-fold rotational symmetry about the z-axis. 
In [5], a vertical load of magnitude daNpP ZZ 5000⋅== λλ  was considered to act upon the 
top joint, so the resulting reticulated system behaved as a perfect one. Non-linear buckling 
analysis was performed, and a multiple bifurcation point was detected for the load parameter 

84.13=λ . Here, the system symmetry is instead broken by the addition of a disturbing 
horizontal load, XX pP λ= , so that the structural behaviour can be gradually converted from 
that of a quasi-perfect system to that of an imperfect one. 
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Figure 10: Symmetrically braced Schwedler dome – Equilibrium path – Joint 1 
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Figure 11: Spirally braced mast – Equilibrium path – Joint 1 

Figures 11(a) and 11(b) show two different views of the primary branch relative to the load 

ratio values, ZX pp / , presented in Table 1. The same table also reports the angle, φ , and the 

limit load multiplier, maxλ . A step-length m2=∆η  was used for the analyses, with 

cm10 =µ  and 610−=TOL . 

ZX pp /  1/1 1/10 1/100 1/1000 1/10000 

φ  0.15 0.10 0.10 0.05 0.05 

maxλ  3.930 10.222 12.971 13.644 13.972 

Table 1: Load ratio, half-cone angle and limit load multiplier for the spirally braced mast 

A better understanding of structural behaviour can be achieved if we think of the mast as 
composed of seven superimposed substructures joined to each other by six groups of bars 
placed along the edges of coaxial squares. Additional bars stiffen three of these squares. With 
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this in mind, the structural behaviour reduces to that of a series system. If only a vertical load 
acts, the bracing arrangement forces each layer to rotate about the z-axis, and the global 
response is again characterised by a sequence of spinning phases. Overall lateral bending 
starts when the bifurcation is reached and develops following a secondary branch. Instead, in 
the presence of a disturbing horizontal load, the flexural behaviour appears right from the 
beginning of the loading process, and develops along the primary branch. 
Figure 12 shows the sequence of equilibrium configurations for the load ratio 

10000/1/ =ZX pp . During the initial phase OA, spinning prevails on bending and the top 
joint undergoes almost only vertical displacements. At the turning point A, a plane of 
minimum bending stiffness emerges and the mast begins to bend following the arc AB. At B, 
a second turning point is encountered, which determines a dramatic decrease in stiffness along 
the arc BC, interpretable as a snap-back. This loss of stiffness is due to the formation of a 
cylindrical hinge between the third and fourth layers. Here, due to the absence of any 
horizontal stiffening, the bars of the interposed square fall into a common line. This evidently 
constitutes the Achilles’ heel of the reticulated system. Afterwards, the structure transforms 
into a mechanism no longer able to sustain any applied loads. The upper layers experience an 
approximately rigid body rotation, CD, which progresses until ultimate failure near E. 

 
 O A B C D E 

Figure 12: Spirally braced mast with 10000/1/ =ZX pp  – Configurations sequence 

5.4. A symmetrically braced mast 

In analogy to the treatment of the domes, a different bracing scheme is also considered. Here, 
secondary bars are arranged in such a way as to oppose any possible rotations about the z-
axis. The structure possesses two-fold rotational symmetry. As before, a disturbing horizontal 
load, XX pP λ= , is added to the vertical load, daNpP ZZ 5000⋅== λλ . 
Figures 13(a) and 13(b) show two different views of the primary branch relative to the load 

ratio values, ZX pp / , indicated in Table 2. The same table also reports the angle, φ , and the 
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limit load multiplier, maxλ . A step-length of m2=∆η  was used for the analyses, with 

cm10 =µ  and 610−=TOL . 
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Figure 13: Symmetrically braced mast – Equilibrium path – Joint 1 

Figure 14 represents the sequence of configurations along the equilibrium path obtained for 
the load ratio 10000/1/ =ZX pp . Again, the weakest point of the structure is located at the 
interface between the third and fourth layers, where a cylindrical hinge forms. Regarding the 
description of the post-critical behaviour, considerations similar to those for the spirally 
braced case apply. 

ZX pp /  1/1 1/10 1/100 1/1000 1/10000 

φ  0.025 0.05 0.05 0.025 0.025 

maxλ  2.484 8.172 11.661 12.598 12.930 

Table 2: Load ratio, half-cone angle and limit loads for the symmetrically braced mast 
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 O A B C D E 

Figure 14: Symmetrically braced mast with 10000/1/ =ZX pp  – Configurations sequence 

6. Conclusion 

A strategy for uniformly accurate tracing of the equilibrium paths of elastic reticulated 
structures subject to conservative proportional loads was applied to the stability analysis of 
two classes of Schwedler domes and three-dimensional masts with different bracing schemes. 
The strategy proves capable of highly accurate tracing of complex tangled equilibrium paths 
endowed with nearly inextricable knots and sharp turning points. 
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