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SOMMARIO

Si valuta lo stato di tensione intorno a discontinuita geometriche, fiuale fessure, in
membrane elastiche di materiale soffice soggette a trazimmassiale. La ricerca delle
soluzioni considera in modo sufficientemente accurato le principali dmon linearita
simultaneamente presenti. In particolare, grandi spostamentinei gtaformazioni sono
tenuti in conto attraverso la misura di deformazione di Green-hggramentre la non
linearita fisica e introdotta dalla legge costitutiva di Ogderguesto contesto, gli effetti di
possibili fenomeni d’instabilita locale sono tenuti in conto automatocdéenricorrendo al
concetto dienergia rilassataproposto da Pipkin per lo studio delle membrane corrugate.
Infine, una procedura di continuazione di tgge-lengthpermette il tracciamento del percorso
d’equilibrio. Il modello risultante puo essere utile per analizzarsposta istantanea di taluni
tessuti biologici sotto sforzo crescente. Le applicazioni numerigpeardano casi di
membrane rettangolari.

ABSTRACT

We study the stress distribution in the neighbourhood of geometric disgitie, such as
holes and slits, in soft elastic membranes subject to increasiagial traction. The search
for the solutions is carried out taking simultaneously into accounintie sources of non-
linearity. In particular, large displacements and large defeomsatre considered by adopting
the Green-Lagrange measure of strain, while physical non-lipeargntered via Ogden’s
constitutive law. Within this context, possible phenomena of local bucat|m@utomatically
taken into account through the concepteddxed energyproposed by Pipkin for the analysis
of wrinkled membranes. Finally, a continuation procedure ofathdengthtype permits the
tracing of the equilibrium path. The proposed model can be usefully exploit analysing
the instantaneous response of biological tissues under increasingGaads. of rectangular
membranes are illustrated as a numerical application.

1. INTRODUCTION

Membranes made of soft materials, such as thin rubber sheets agidabtissues, usually
undergo large displacements and large strains, even under moddst s#rsses. On the
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other hand, if one attempts to reverse the sign of the in-plane applied loads, he e@lhowti
these elements prefer undergo large out-of-plane displacementsir(uaidther than
accepting the introduction of any appreciable superficial contractionghese cases,
compressive stresses cannot exceed a very small value. Ratresceptable simplifying
assumption is that these exactly vanish throughout the membrane. Pbihdyjs is here
considered to hold.

Because of this peculiar behaviour, shear states of stress wamdd a full or partial
wrinkling of the membrane. Likewise, geometrical discontinuitiesh sag holes or slits,
determine a local buckling of their surrounding regions even under pngveehsile state of
stress (Cherepanov, [1]). However, since the resulting stresibutisin is everywhere quite
different from that predicted by standard Membrane Theory, we eannably argue that, in
soft materials, the stress-concentration around geometrical disgbas may result less
severe.

In order to verify the above statement, a number of different phenomesiabe taken
simultaneously into account since several sources of non-lineariy ¢mexist. The
mechanical model we are going to present deals with each ofttihengh a specific tool. In
particular, large displacements and large deformations are caatsiole adopting the Green-
Lagrange measure of strain. Physical non-linearity is takenaotount by assuming the
membrane to be made of an isotropic hyper-elastic material velnesgy density function is
of the type proposed by Ogden [2]. Buckling and eventual wrinkling aresdraisra physical
non-linearity modifying the energy density function, according ta¢hexed energyoncept
proposed by Pipkin [3]. Finally, evolution of the whole phenomenon is analysedpath-
tracing procedure of the arc-length type [5].

The set of equations that govern the non-linear equilibrium of igitiddit elastic
membranes under in-plane loads is derived via the principle of stgtitwtai potential
energy. Solutions are carried out numerically in a finite eleraealysis context, based on a
total Lagrangian formulation. Aad hocisoparametric triangular element was implemented,
able to account for the above sources of non-linearity.

Numerical results relating to rectangular membranes appear to confirmtialiassertion.

2. PROBLEM FORMULATION

2.1. Geometry
Consider an elastic membrane, which in the reference configuratippccupies the region

Q of the planeOXY bounded by the curvE. Let I, be the part of where displacements,
u=1u, are prescribed anld, the part where an in-plane edge tractior, i/ t, is assigned.
We suppose that loads increase proportionally to the single multiplietl” . Finally, let the

membrane be endowed with a central hole or a slit, whose bouRgasytraction free.

2.2. Reduction to a planar problem

Let X = [X,Y,O] T be the position vector of a material poi[JQ, of the membrane in the
reference configuration;*. In the generic configuration;’, the point occupies the new
position,x =[x, y,z] 7, thus undergoing the total displacemauitz x - X =[u,v,w] .

In presence of buckling or wrinkling, the membrane reaches itsl@guiti in a deformed
configuration, which is quite far away from the initial one. Thersfar large displacement
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analysis is usually required. Furthermore, if the material is soft enough, thensivéake into
account the contemporary presence of large strains. For thesmgedlse non-linear
equilibrium problem should be based on a suitable measure of strain.weéecensider the
Green-Lagrange tensor

U au OU ou
E== : (1)
ax ) lax X ) \lax
wheredU/dX denotes the displacement gradient.

At equilibrium, because of its limited thickness, the membrankbsilin a prevailing
generalised plane state of stress. Therefore, the componen@iotsioe determined reduce
to E,., E,., and Gy, =2E,, since E,, is a function of the preceding ones and
E., =E,, =0.

The total strain vectoe = [E,,E,,,G,,] ", can be written out as

e=g+¢g", (2)

where € represents the contribution of the in-plane disphaents,u and v, while the
contribution of the out-of-plane displacement, is expressed by the vect&” whose
components are the so-calledinkle strains[4]. However, by means of the concept of
relaxed energyas given by Pipkin, local buckling and wrinkliptpenomena can be taken
automatically into account as a physical non-lifigaFor this reason, the vectat’ will be
omitted in the following analysis, so that the pgeob is reduced to a planar one.

With reference to the componentsepthe in-plane principal straing, and E,, result

El,zzz( XX+EYY—\/ Exw —E +GXY )’ 3)
while the in-plane principal stretches, and A, , are given by
AP =2E +1, A2 =2E,+1. (4)

2.3. Material non-linearity
If the material of the membrane is capable of epeing finite deformations, the region
surrounding a geometrical discontinuity can morglgadapt its shape to the state of stress
there present. In many cases, this phenomenoneadytd a relevant reduction of the severity
of stress-concentration. Here, we suppose the namabto be made of a homogeneous
isotropic hyper-elastic material whose energy dgnisinction is of the type proposed by
Ogden. This material appears appropriate for oupgses, because of its good agreement
with experimental data on rubber over a wide rasfgensile strain.

The strain energy density, as a function of theggal stretches, has the form

N

) Ul o o - a

W RED Y (A2 + 2,7 + 270 -3). 5)
p=1*p
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Limiting the above summation tdN =3 and adopting the hypothesis of material
incompressibility

AALA, =1, (6)

one obtains the expression

3

) =Y Eo (A0 4 4,7 + (44, -3). @)
p=1 ap

2.4. Admissible values of the in-plane principal sétches

Based on the definition efatural width(see Pipkin, [3]), a qualitative prevision of tiype of

equilibrium state existing in the neighbourhood eofpoint P of the membrane becomes

possible. To this aim, the in-plane principal sthess, A, and A,, play the role of reference

variables. For an incompressible material, we gdl that the poir® belongs to @aut region

if there A, and A, satisfy the conditions

A2 A7 andA, 2 A7 (8)
Vice versathe pointP belongs to avrinkledregion if there
A >1and0< A, <A™, or, alternatively, ifl, > land0< A, <A, 77, 9)

Finally, we will consider the poir® belonging to annactive (slackor buckled region if
there

0<A<landO<A,<1 (10)
2.5. The concept ofelaxed energy

By the hypothesis of material incompressibilitye #xpressions of the principal Biot stresses,
t, andt,, which are work-conjugate with the principal sthets, A, and A,, are

: _ (11)

= = o - .

t, P) 1 H [/]2 ’ (/11/]2) p]
2 2

p=1

Depending on the values assumedipyand A, , these stresses may be positive or negative,
in the latest case contradicting the stated irtgbif the membrane of sustaining any
compressive stress. The simplest manner to obtaates drawback consists in using in
(11) the followingrelaxed energyw.,, , defined as

rel 1
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0, 0<A;<land0<A <1
(2,477, A2land0<A,<A, "
wrel (/1 l’A 2) - -1/2 -1/2 (12)
(A, N,), 0<A<A, Y andA,>1,
W(A,A,), A2 A, andA,2 A,

which automatically takes into account the effeots stress due to local buckling and
wrinkling, setting to zero any compressive strassirgg in wrinkled and inactive regions. In
other words, use of relation (12), permits locatkdimg and wrinkling phenomena to be
formally treated as a physical non-linearity.

3. THE STATIONARY POTENTIAL ENERGY PRINCIPLE

By using the previous expressions for the relaxeztgy densityw,, , we can define the total
potential energy of the system (membrane plus Jaadse actual configuration,, as

M(u,v, )= j@e,dv —ujfmdr
r

Vo

(13)

P

where u=[u,v]" denotes the in-plane displacement vector, wifjeand I, refer to the
volume and the loaded boundary of the membranehén reference configuration,*,

respectively.

For a given load parameter, equilibrium of the system corresponds to statipmeints
for the functional (13). Then, solving the systefmegquilibrium equations for increasing
values of the load multipliery, permits the tracing of the equilibrium path, whitully
describes the evolution of the phenomenon. Howerarept for a few elementary cases, the
stated problem can be handled in practice onlyelopurse to numerical procedures. Among
these, we believe that incremental-iterative sgiate such aarc-lengthmethods, should be
privileged since they permit a step-wise accuratdrol of the equilibrium conditions [5].

In addition to what presented up to now, usingaactlength method requires further
knowledge of the so-called tangent stiffness matfixhe discretised model. Details of the
adopted numerical strategy are here omitted forityrand will be fully given in an incoming
paper. Here we limit ourselves to the presentaiisome results obtained till now.

4. A SQUARE MEMBRANE WITH A CENTRAL CIRCULAR HOLE

The model is first applied to the analysis of atially flat square membrane endowed with a
central circular hole (Figure 1a), under prevailingaxial state of stress. The edge length is
L =100mm, the thickness i1 =1mm, and the hole has diamet2a =10mm. An increasing

uniform tractiont = ut = y[O, SW]T, whereS, = 02N, is applied along the edges parallel to

the X-axis, while the other edgeX = +L /2, are traction free. Finally, thedisplacement of
the corner points is inhibited.
On accounting for the existing symmetries, onlguarter of the membrane needs being
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considered. The resulting FEM model is represemétdgure 1b. It comprises 316 nodes and
568 constant strain/constant stress triangularesdsn Moreover, the following values

M, = 063MPa, u,=0.0012MPa, u,=-001MPa,

a,=13, a,=50 a;=-20 (14)

were used for the parameters appearing in the ssipre(7) of the strain-energy.
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Figure 1 — A square membrane with a central cirdutde: a) geometry and loads; b) FEM model.

For the sake of comparison, the stated problem fivady solved via the standard
membrane theory and then by using the wrinkled nman®b theory. Figure 2a shows the
deformed shape obtained in the first case in cpomdence to the load multipligr= 010.

a) b)
Figure 2 — Membrane with a hole. Standard membttaeery: a) deformed shape; b) stress trajectories.
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Figure 2b presents a detail of the principal sttesjectories in a small region surrounding
the hole, where compressive stresses were madengvag thick lines.

a) b)
Figure 3 — Membrane with a hole. Wrinkled membrtre®ry: a) deformed shape; b) stress trajectories.

Figures 3a and 3b show instead the deformed shapea detail of the principal stress
trajectories, as furnished by the wrinkled membrh@®ry, for the same load multiplier. It is
evident how compressive stresses are no more présmording to the above definitions, a
small region appears over pofdf which can be classified as a slack region, iteglements
are stress free. Moreover, adjacent elements agpe&ae tensioned along one principal
direction and contracted along the other, thushgivise to a contouring wrinkled region.
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Figure 4 — Membrane with a hole: a) equilibriumhgat) stress concentration factors.

In Figure 4a the relating equilibrium paths areteld in theu, -z+plane, whereu, is the
horizontal displacement of the poiAt= [a,O]T. Figure 4b shows instead the laws of variation
of the ratioS,, /S, between the normal component of str&ga  a@jl the reference load
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S, . The two models show appreciable differences imseof displacements rather then in
stress, while a marked decrease of the stress4etwaten factor is common to both cases.
5. ASQUARE MEMBRANE WITH A CENTRAL SLIT

Next, we consider a square membrane with a ceslitdFigure 5a). The gross dimensions of
the membrane and the boundary conditions are asebédihe slit size ia =10mm.
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Figure 5 — A square membrane with a central gligemmetry and loads; b) FEM model.

Figure 5b illustrates the adopted FEM model, witichprises 341 nodes and 616 constant
strain/constant stress triangular elements. Thanpater values given in (14) were adopted.

C L4
VNG N\
A VAR
a) b)
Figure 6 — Membrane with a slit. Standard membthaery: a) deformed shape; b) stress trajectories.

Again, the stated problem was firstly solved Via standard membrane theory and then by
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using the wrinkled membrane theory. With referetaehe first case, Figure 6a depicts the
deformed shape for the load multipligr = 010, while a detail of the principal stress
trajectories in the region surrounding the slitgigen in Figure 6b. Existing compressive

stresses were made more evident by thick lines.
Figures 7a and 7b show instead the deformed styaghe¢he detail of the principal stress
trajectories obtained via the wrinkled membranemeor the same load multiplier.

a)

Jr% N

b)

Figure 7 — Membrane with a slit. Wrinkled membrémeory: a) deformed shape; b) stress trajectories.

Finally, in Figure 8a the resulting equilibriumtips were plotted in the, -z+~plane. Figure
8b shows the laws of variation of the stress r&jp/S, . Again, a marked decrease of the
stress-concentration factor is evident, but nowdifierences in terms of stress between the
two solutions are no more negligible.
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Figure 8 — Membrane with a slit: a) equilibriumpgtb) stress concentration factors.



Salvatore Ligaro, Paolo Valvo

6. CONCLUSION

A model was presented for analysing the stressrildlision, which arises in the
neighbourhood of geometric discontinuities, sucthales or slits, in soft elastic membranes
subject to increasing loads. The main sources af-lin@arity present were taken
simultaneously into account by recourse to spetdals. In particular, large displacements
and large deformations were considered via the rGkegrange measure of strain, while
material non-linearity was entered via Ogden’s tiartg/e law. Moreover, local buckling or
wrinkling phenomena were taken into account throdlgh concept ofrelaxed energy
proposed by Pipkin. The equilibrium problem wasvedlby recourse to the stationary total
potential energy principle. Finally, numerical dadas for increasing load values were
obtained by using a continuation procedure ofatelengthtype, which allowed the tracing
of the equilibrium path.

The proposed strategy features some not negligiislevations with respect to what is
usually considered when modelling soft biologicamibranes ([6], [7]). In particular, three
main aspects of novelty can be highlighted:

a) the peculiar property of biological materialsnot being able to sustain any compressive
stress is taken into account;

b) interaction between geometrical discontinuitiasd local buckling and wrinkling
phenomena is fully considered,;

c) the possibility of monitoring the evolution dfet whole phenomenon for increasing load.
In this case, for relevant quantities, such asstoencentration factors and characteristic
displacements, the laws of variation with the loadtiplier were obtained.

To our opinion, these aspects can in many case® malevantly affect the stress
distribution, with respect to other ones, suchia® tdependency, anisotropy, etc., usually
entered in more sophisticated constitutive laws.

Application of the resulting model to simple casésectangular membranes endowed with
a central hole or a slit under uniaxial tractionsvgatisfactory. In particular, a more realistic
estimate of the stress concentration factors wegpect to standard membrane theory was
obtained. It is noteworthy in both cases how, afterery short initial stage of the loading
process, the concentration factors resulted quiterent and less severe from the values
predicted from the Linear Elastic Fracture Mechsnic
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