1343 °

UNIVERSITÀ DI PISA - Facoltà di Ingegneria

Meccanica Analitica e dei Continui (CLS Ing. Nucleare e della Sicurezza Industriale) Scienza delle Costruzioni (CL Ing. Nucleare e della Sicurezza e Protezione) Scienza delle Costruzioni (CLS Ing. Elettrica)

A.A. 2009/2010 - Secondo periodo

Docente: Dott. Ing. Paolo Sebastiano VALVO

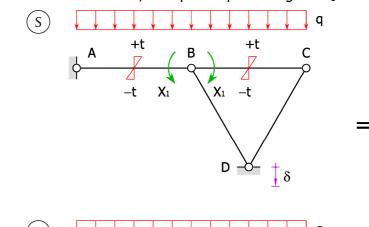
Prova d'esame del 30 giugno 2010 – Soluzione

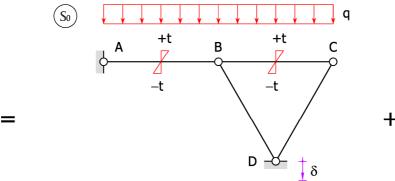
Problema A

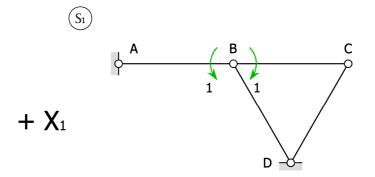
Il problema strutturale assegnato risulta una volta staticamente non determinato. La soluzione sarà affrontata prima con il metodo delle forze, poi con il metodo della linea elastica.

1) Metodo delle forze

Il sistema costituito dalla struttura e dalle azioni esterne (carichi, variazioni termiche, cedimento vincolare) è equivalente al sistema S, mostrato nella figura sottostante, dove in corrispondenza della sezione B si è introdotta una sconnessione a momento flettente, esplicitando l'incognita iperstatica X_1 . Applicando il Principio di sovrapposizione degli effetti, il sistema S è decomposto nella combinazione del sistema S_0 , nel quale agiscono le azioni esterne, e del sistema S_1 , nel quale agisce l'incognita iperstatica assunta unitaria, moltiplicato per l'incognita X_1 stessa.





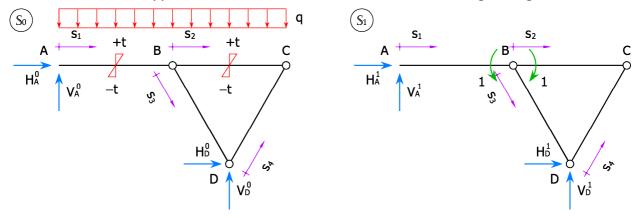


Meccanica Analitica e dei Continui (CLS Ing. Nucleare e della Sicurezza Industriale) Scienza delle Costruzioni (CL Ing. Nucleare e della Sicurezza e Protezione) Scienza delle Costruzioni (CLS Ing. Elettrica)

A.A. 2009/2010 - Secondo periodo

Docente: Dott. Ing. Paolo Sebastiano VALVO

I problemi relativi ai sistemi S_0 ed S_1 , staticamente determinati, possono essere risolti grazie alle sole equazioni di equilibrio. A tale scopo, si considerano le strutture in questione private dei vincoli esterni, sostituiti dalle opportune reazioni vincolari, come mostrato nella figura seguente.



Le equazioni di equilibrio globale (traslazione orizzontale e verticale, rotazione intorno a B) per il sistema S_0 si scrivono come segue:

Per determinare i valori delle quattro componenti di reazione incognite è necessaria un'ulteriore equazione. Quest'ultima può essere ottenuta, ad esempio, imponendo l'equilibrio alla rotazione intorno a B della trave AB:

B
$$-V_A^0 L + qL \frac{1}{2}L = 0.$$

Risolvendo si trovano i valori delle reazioni vincolari in S_0 :

$$H_A^0 = \frac{\sqrt{3}}{6} qL$$
, $V_A^0 = \frac{1}{2} qL$, $H_D^0 = -\frac{\sqrt{3}}{6} qL$, $V_D^0 = \frac{3}{2} qL$.

Analogamente, si scrivono le equazioni di equilibrio globale per il sistema S₁,

e l'equazione ausiliaria,

$$\begin{array}{c}
\bullet \\
B
\end{array} - V_A^1 L + 1 = 0,$$

da cui i valori delle reazioni vincolari:

$$H_{A}^{1}=-\frac{\sqrt{3}}{L}\text{, } V_{A}^{1}=\frac{1}{L}\text{, } H_{D}^{1}=\frac{\sqrt{3}}{L}\text{, } V_{D}^{1}=-\frac{1}{L}\text{.}$$

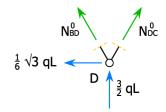
Meccanica Analitica e dei Continui (CLS Ing. Nucleare e della Sicurezza Industriale) Scienza delle Costruzioni (CL Ing. Nucleare e della Sicurezza e Protezione) Scienza delle Costruzioni (CLS Ing. Elettrica)

A.A. 2009/2010 - Secondo periodo

Docente: Dott. Ing. Paolo Sebastiano VALVO

Si può passare, quindi, a determinare le caratteristiche della sollecitazione nei due sistemi. A tal fine, per ciascuna trave si definisce un'ascissa curvilinea, come mostrato nella figura precedente.

Si osserva, in primo luogo, che le travi BD e DC sono aste reticolari caricate solo da forze in corrispondenza delle cerniere di estremità, per cui saranno soggette unicamente a forza normale. Dalle equazioni di equilibrio per il nodo D nel sistema S_0 ,



si ricavano

$$N_{BD}^{0} = -\frac{2\sqrt{3}}{3}qL$$
, $N_{DC}^{0} = -\frac{\sqrt{3}}{3}qL$.

Le espressioni delle caratteristiche della sollecitazione nelle travi AB e BC si possono ricavare attraverso le equazioni indefinite di equilibrio

$$\begin{cases} N_{AB}^{0\; \prime} = 0 \\ T_{AB}^{0\; \prime} = -q \\ M_{AB}^{0\; \prime} = T_{AB}^{0} \end{cases} \Rightarrow \begin{cases} N_{AB}^{0}(s_{1}) = A_{1} \\ T_{AB}^{0}(s_{1}) = -qs_{1} + B_{1} \\ M_{AB}^{0}(s_{1}) = -\frac{1}{2}qs_{1}^{2} + B_{1}s_{1} + C_{1} \end{cases}$$

$$\begin{cases} N_{BC}^{0\; \prime} = 0 \\ T_{BC}^{0\; \prime} = -q \\ M_{BC}^{0\; \prime} = T_{BC}^{0} \end{cases} \Rightarrow \begin{cases} N_{BC}^{0}(s_{2}) = A_{2} \\ T_{BC}^{0}(s_{2}) = -qs_{2} + B_{2} \\ M_{BC}^{0}(s_{2}) = -\frac{1}{2}qs_{2}^{2} + B_{2}s_{2} + C_{2} \end{cases}$$

con i valori delle costanti di integrazione ottenuti imponendo le seguenti condizioni al contorno

$$\begin{cases} N_{AB}^{0}(0) = A_{1} = -H_{A}^{0} = -\frac{\sqrt{3}}{6}qL \\ T_{AB}^{0}(0) = B_{1} = V_{A}^{0} = \frac{1}{2}qL \\ M_{AB}^{0}(0) = C_{1} = 0 \end{cases} \xrightarrow{N_{AB}^{0}} \begin{pmatrix} N_{AB}^{0}(0) = C_{1} = 0 \\ N_{BC}^{0}(0) = A_{2} = N_{AB}^{0}(L) - \frac{1}{2}N_{BD}^{0} = A_{1} - \frac{1}{2}(-\frac{2\sqrt{3}}{3}qL) \\ T_{BC}^{0}(0) = B_{2} = T_{AB}^{0}(L) - \frac{\sqrt{3}}{2}N_{BD}^{0} = B_{1} - qL - \frac{\sqrt{3}}{2}(-\frac{2\sqrt{3}}{3}qL) \\ M_{BC}^{0}(0) = C_{2} = 0 \end{cases}$$

Meccanica Analitica e dei Continui (CLS Ing. Nucleare e della Sicurezza Industriale) Scienza delle Costruzioni (CL Ing. Nucleare e della Sicurezza e Protezione) Scienza delle Costruzioni (CLS Ing. Elettrica)

A.A. 2009/2010 - Secondo periodo

Docente: Dott. Ing. Paolo Sebastiano VALVO

Risolvendo e sostituendo i valori delle costanti, si ottengono le espressioni delle caratteristiche della sollecitazione in S_0 :

$$\begin{cases} N_{AB}^{0}(s_{1}) = -\frac{\sqrt{3}}{6}qL, & \begin{cases} N_{BC}^{0}(s_{2}) = \frac{\sqrt{3}}{6}qL, \\ T_{AB}^{0}(s_{1}) = \frac{1}{2}qL - qs_{1}, \\ M_{AB}^{0}(s_{1}) = \frac{1}{2}qLs_{1} - \frac{1}{2}qs_{1}^{2}; \end{cases} \begin{cases} N_{BC}^{0}(s_{2}) = \frac{1}{2}qL - qs_{2}, \\ M_{BC}^{0}(s_{2}) = \frac{1}{2}qLs_{2} - \frac{1}{2}qs_{2}^{2}. \end{cases}$$

Procedendo in maniera analoga, si ottengono le espressioni delle caratteristiche della sollecitazione nel sistema S_1 :

$$\begin{cases} N_{AB}^{1}(s_{1}) = \frac{\sqrt{3}}{L}, & \begin{cases} N_{BC}^{1}(s_{2}) = \frac{\sqrt{3}}{3L}, \\ T_{AB}^{1}(s_{1}) = \frac{1}{L}, & \end{cases} & \begin{cases} N_{BC}^{1}(s_{2}) = -\frac{1}{L}, & N_{BD}^{1} = \frac{4\sqrt{3}}{3L}; & N_{DC}^{1} = -\frac{2\sqrt{3}}{3L}. \\ M_{AB}^{1}(s_{1}) = \frac{s_{1}}{L}; & \end{cases} & \end{cases}$$

I corrispondenti diagrammi sono riportati nella figura a pagina seguente.

Lo spostamento generalizzato del punto di applicazione dell'incognita iperstatica X_1 nel sistema effettivo S rappresenta, per il problema in esame, la rotazione relativa tra le sezioni collegate in B. Tale rotazione relativa è nulla in S per la presenza della saldatura fra i tratti AB e BC, per cui

$$\eta_1 = 0$$
.

I rimanenti coefficienti di Müller-Breslau si calcolano applicando il Teorema dei lavori virtuali:

$$\begin{split} \mathcal{L}_{e}^{1\to 0} &= 1 \cdot \eta_{10} + \frac{1}{L} \delta = \\ &= \mathcal{L}_{i}^{1\to 0} = \int_{0}^{L} M_{AB}^{1}(s_{1}) \; \kappa_{AB}^{0}(s_{1}) \; ds_{1} + \int_{0}^{L} M_{BC}^{1}(s_{2}) \; \kappa_{BC}^{0}(s_{2}) \; ds_{2} + N_{BD}^{1} \; \epsilon_{BD}^{0} \; L + N_{DC}^{1} \; \epsilon_{DC}^{0} \; L = \\ &= \int_{0}^{L} \frac{s_{1}}{L} \left[\frac{q}{2EJ} (Ls_{1} - s_{1}^{2}) - \frac{2\alpha t}{h} \right] ds_{1} + \int_{0}^{L} (1 - \frac{s_{2}}{L}) \left[\frac{q}{2EJ} (Ls_{2} - s_{2}^{2}) - \frac{2\alpha t}{h} \right] ds_{2} + \\ &+ \frac{4\sqrt{3}}{3l} \left(-\frac{2}{3} \sqrt{3} \frac{qL}{F\Delta} \right) L + \left(-\frac{2\sqrt{3}}{3l} \right) \left(-\frac{1}{3} \sqrt{3} \frac{qL}{F\Delta} \right) L = \frac{qL^{3}}{12EJ} - \frac{2qL}{F\Delta} - \frac{2\alpha tL}{h} \; ; \end{split}$$

$$\begin{split} \mathcal{L}_{e}^{1\to 1} &= 1 \cdot \eta_{11} = \\ &= \mathcal{L}_{i}^{1\to 1} = \int_{0}^{L} M_{AB}^{1}(s_{1}) \; \kappa_{AB}^{1}(s_{1}) \; ds_{1} + \int_{0}^{L} M_{BC}^{1}(s_{2}) \; \kappa_{BC}^{1}(s_{2}) \; ds_{2} + N_{BD}^{1} \; \epsilon_{BD}^{1} \; L + N_{DC}^{1} \; \epsilon_{DC}^{1} \; L = \\ &= \int_{0}^{L} (\frac{S_{1}}{L})^{2} \frac{1}{EJ} \; ds_{1} + \int_{0}^{L} (1 - \frac{S_{2}}{L})^{2} \frac{1}{EJ} \; ds_{2} + (\frac{4\sqrt{3}}{3L})^{2} \frac{1}{EA} L + (-\frac{2\sqrt{3}}{3L})^{2} \frac{1}{EA} L = \frac{2L}{3EJ} + \frac{20}{3EAL}. \end{split}$$

Dall'equazione di compatibilità cinematica si ricava, infine, il valore dell'incognita iperstatica:

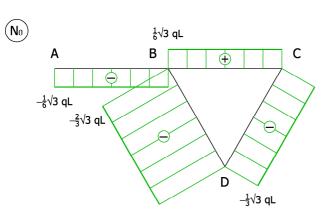
$$\eta_1 = \eta_{10} + X_1 \eta_{11} = 0 \quad \Rightarrow \quad X_1 = -\frac{\eta_{10}}{\eta_{11}} = \frac{\frac{qL^3}{24EJ} - \frac{qL}{EA} - \frac{\alpha tL}{h} - \frac{\delta}{2L}}{\frac{L}{3EJ} + \frac{10}{3EAL}}.$$

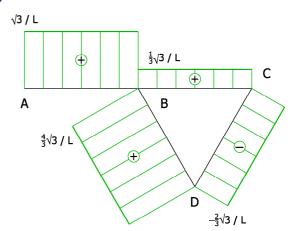
Meccanica Analitica e dei Continui (CLS Ing. Nucleare e della Sicurezza Industriale) Scienza delle Costruzioni (CL Ing. Nucleare e della Sicurezza e Protezione) Scienza delle Costruzioni (CLS Ing. Elettrica)

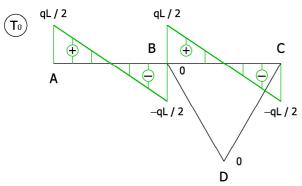
 (N_1)

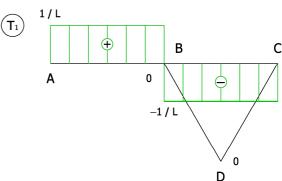
A.A. 2009/2010 - Secondo periodo

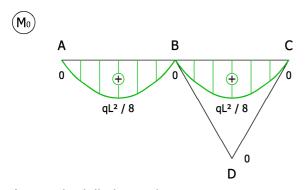
Docente: Dott. Ing. Paolo Sebastiano VALVO

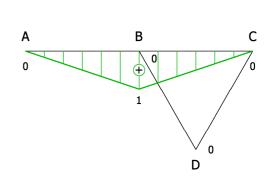












2) Metodo della linea elastica

Si imposta la soluzione del problema con il metodo della linea elastica nell'ipotesi che le aste BD e DC siano inestensibili (EA $\rightarrow \infty$). Poiché l'asta BD trasmette un'azione concentrata nella sezione B del tratto ABC, è necessario scrivere separatamente le equazioni differenziali per gli spostamenti trasversali v_1 e v_2 sui tratti AB e BC:

 (M_1)

EJ
$$v_1^{IV} = q$$
 e EJ $v_2^{IV} = q$.

Le condizioni al contorno da imporre sono:

$$\begin{split} v_{_{1}}(0) &= 0\,, & v_{_{1}}(L) = \delta\,, & v_{_{2}}(L) = \delta\,, \\ M_{_{1}}(0) &= 0 \Rightarrow v_{_{1}}^{_{II}}(0) = \frac{2\alpha t}{h}\,; & v_{_{2}}(0) = \delta\,, & m_{_{2}}(L) = 0 \Rightarrow v_{_{2}}^{_{II}}(L) = \frac{2\alpha t}{h}\,. \\ M_{_{1}}(L) &= M_{_{2}}(0) \Rightarrow v_{_{1}}^{_{II}}(L) = v_{_{2}}^{_{II}}(0), & m_{_{2}}(L) &= 0 \Rightarrow v_{_{2}}^{_{II}}(L) = \frac{2\alpha t}{h}\,. \end{split}$$

Meccanica Analitica e dei Continui (CLS Ing. Nucleare e della Sicurezza Industriale) Scienza delle Costruzioni (CL Ing. Nucleare e della Sicurezza e Protezione) Scienza delle Costruzioni (CLS Ing. Elettrica)

A.A. 2009/2010 - Secondo periodo

Docente: Dott. Ing. Paolo Sebastiano VALVO

Problema B

1) Calcolo dei tensori F, G e H

Poiché è assegnato il campo di spostamento $\mathbf{u}(\mathbf{x}^0)$, conviene calcolare per prima la matrice delle componenti del gradiente di spostamento \mathbf{H} ,

$$[H] = \left[\frac{\partial u_i}{\partial x_j^0}\right] = \begin{bmatrix} \epsilon \left(1 - \frac{x_2^0}{a}\right) & -\epsilon \frac{x_1^0}{a} \\ 0 & 2\epsilon \frac{x_2^0}{a} \end{bmatrix}.$$

Quindi, si ricava la matrice delle componenti del gradiente di trasformazione F,

$$[F] = [H] + [I] = \begin{bmatrix} \epsilon (1 - \frac{x_2^0}{a}) + 1 & -\epsilon \frac{x_1^0}{a} \\ 0 & 2\epsilon \frac{x_2^0}{a} + 1 \end{bmatrix}.$$

Infine, si calcola la matrice delle componenti del tensore di deformazione di Green-Lagrange G,

$$[G] = \frac{1}{2}([F]^{T}[F] - [I]) = \begin{bmatrix} \epsilon (1 - \frac{x_{2}^{0}}{a}) + \frac{1}{2}\epsilon^{2}(1 - \frac{x_{2}^{0}}{a})^{2} & -\frac{1}{2}\epsilon \frac{x_{1}^{0}}{a} - \frac{1}{2}\epsilon^{2} \frac{x_{1}^{0}}{a}(1 - \frac{x_{2}^{0}}{a}) \\ -\frac{1}{2}\epsilon \frac{x_{1}^{0}}{a} - \frac{1}{2}\epsilon^{2} \frac{x_{1}^{0}}{a}(1 - \frac{x_{2}^{0}}{a}) & 2\epsilon \frac{x_{2}^{0}}{a} + \frac{1}{2}\epsilon^{2}(\frac{x_{1}^{0}}{a})^{2} + 2\epsilon^{2}(\frac{x_{2}^{0}}{a})^{2} \end{bmatrix}.$$

2) Ipotesi di piccole deformazioni

Se $\varepsilon \ll 1$ si possono trascurare le quantità in ε^2 rispetto a quelle in $\varepsilon \ll 1$, per cui

$$[G] \cong \begin{bmatrix} \epsilon \left(1 - \frac{x_2^0}{a}\right) & -\frac{1}{2}\epsilon \frac{x_1^0}{a} \\ -\frac{1}{2}\epsilon \frac{x_1^0}{a} & 2\epsilon \frac{x_2^0}{a} \end{bmatrix} = [E] = \text{sym} [H] = \frac{1}{2}([H] + [H]^T).$$

La variazione di lunghezza della diagonale AC è data da

$$\Delta L_{AC} = \int_{\Lambda}^{C} \varepsilon_{l} dl_{0}$$

dove ϵ_l e d l_0 indicano, rispettivamente, l'allungamento relativo e l'elemento di lunghezza nella direzione della diagonale. Nell'ipotesi di piccole deformazioni,

dove \mathbf{I}_0 è il versore nella direzione di AC. In componenti, considerando che su AC è $\mathbf{x}_1^0 = \mathbf{x}_2^0$,

$$\epsilon_{I} = (\frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{2}}) \begin{bmatrix} \epsilon (1 - \frac{x_{1}^{0}}{a}) & -\frac{1}{2} \epsilon \frac{x_{1}^{0}}{a} \\ -\frac{1}{2} \epsilon \frac{x_{1}^{0}}{a} & 2 \epsilon \frac{x_{1}^{0}}{a} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{2} \epsilon,$$

da cui

$$\Delta L_{AC} = \frac{\sqrt{2}}{2} \epsilon a$$
.