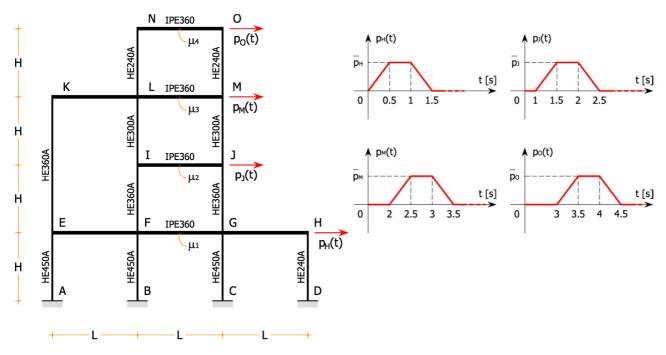
UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2015/2016


Docente: Prof. Ing. Paolo S. VALVO

Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame del 16 febbraio 2017

Il telaio piano mostrato in figura è realizzato in acciaio (modulo di Young $E_s = 210$ GPa, densità $\rho_s = 7850$ kg/m³). Masse distribuite per unità di lunghezza sono presenti sulle travi. Sui nodi indicati agiscono i carichi dinamici definiti dalle leggi temporali mostrate nei grafici sottostanti.

Si assuma valida l'ipotesi di Rayleigh, per cui $[C] = \alpha[M] + \beta[K]$ con $\alpha = 4$ e $\beta = 0.0002$, tenendo conto, però, che il rapporto di smorzamento non possa superare il valore $\xi_{max} = 10\%$.

- a) Assumendo opportune ipotesi semplificative, modellare la struttura come un sistema meccanico a 4 gradi di libertà. In questo caso,
 - determinare le frequenze naturali ed i corrispondenti modi di vibrare della struttura;
 - determinare la risposta dinamica della struttura per un tempo t compreso tra 0 e $t_{max} = 10$ s;
 - tracciare i grafici in funzione del tempo degli spostamenti orizzontali dei punti H, J, M ed O.

[15 punti]

b) Rimosse le precedenti ipotesi semplificative, analizzare il problema con il metodo degli elementi finiti e determinare le stesse quantità di cui al punto a).

[15 punti]

Valori numerici da utilizzare nel calcolo:

 $L = (M/100) \text{ mm}, \qquad H = 4/5 \text{ L}, \qquad \mu_1 = (M/100) \text{ kg/m}, \qquad \mu_2 = (M/400) \text{ kg/m}, \qquad \mu_3 = (M/250) \text{ kg/m}, \\ \mu_4 = (M/500) \text{ kg/m}, \qquad \overline{p}_H = (M/2000) \text{ kN} \,, \quad \overline{p}_J = (M/2500) \text{ kN} \,, \quad \overline{p}_M = (M/4000) \text{ kN} \,, \quad \overline{p}_O = (M/5000) \text{ kN} \,, \quad \text{dove } M = \text{matricola}.$

ANS TATION AND THE PROPERTY OF THE PARTY OF

UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2015/2016

Docente: Prof. Ing. Paolo S. VALVO

Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame del 16 febbraio 2017 - Risposte

Cognome	Nome	Matricola M	Lunghezza L [mm]
Massa distribuita μ ₁ [kg/m]	Massa distribuita μ ₂ [kg/m]	Massa distribuita μ₃ [kg/m]	Massa distribuita μ4 [kg/m]
Carico di riferimento \overline{p}_H [kN]	Carico di riferimento $\bar{p}_{_{\mathrm{J}}}$ [kN]	Carico di riferimento $\bar{p}_{_{\!M}}$ [kN]	Carico di riferimento \bar{p}_{o} [kN]

	Modello se	emplificato	Modello FEM	
Modo i	Frequenza f _i [Hz]		Frequenza f _i [Hz]	
1				
2				
3				
4				
5				
6				
7				
8				
Quantità	Valore min	Valore max	Valore min	Valore max
Spost. orizz. u _H [mm]				
Spost. orizz. u _j [mm]				
Spost. orizz. u _M [mm]				
Spost. orizz. u _o [mm]				