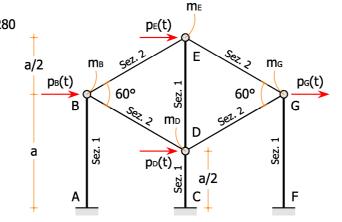
A DICALIANTS

UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

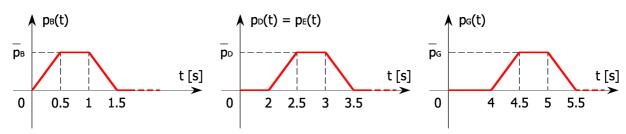
Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2015/2016

Docente: Prof. Ing. Paolo S. VALVO


Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html


Prova d'esame del 16 novembre 2016

La struttura di figura è costituita da travi e aste di acciaio (modulo di Young $E_s = 210$ GPa, densità $\rho_s = 7850$ kg/m³), vincolate fra loro ed al suolo come mostrato. Nelle cerniere B, D, E e G sono presenti masse concentrate $m_B = m_G = m_1$ e $m_D = m_E = m_2$.

Sez. 1: HE 450 A Sez. 2: 2 x UPN 280

Sulla struttura agiscono carichi dinamici le cui leggi temporali sono definite dai grafici sottostanti.

Si assuma un rapporto di smorzamento costante per tutti i modi pari a $\xi = 5\%$.

- a) Assumendo opportune ipotesi semplificative (considerare inestensibili le travi di sezione 1), modellare la struttura come un sistema meccanico a 4 gradi di libertà. In questo caso,
 - determinare le frequenze naturali ed i corrispondenti modi di vibrare della struttura;
 - determinare la risposta dinamica della struttura per un tempo t compreso tra 0 e $t_{max} = 10$ s;
 - tracciare i grafici dello spostamento orizzontale del punto E e della forza normale nelle aste BD e BE in funzione del tempo;
 - determinare il valore della massa concentrata $m_2 = m_2^*$ per cui la prima frequenza naturale $f_1 = 4$ Hz. [15 punti]
- b) Rimosse le precedenti ipotesi semplificative, analizzare il problema con il metodo degli elementi finiti e determinare le stesse quantità di cui al punto a), ad eccezione del valore di m_2^* .

[15 punti]

Valori numerici da utilizzare nel calcolo:

 $a = (M/100) \text{ mm}, m_1 = (M/40) \text{ kg}, m_2 = (M/100) \text{ kg},$

 $\overline{p}_{B}=(M/2000)~kN~,~~\overline{p}_{D}=\overline{p}_{E}=(M/5000)~kN~,~~\overline{p}_{G}=(M/10000)~kN~,~~dove~M=numero~di~matricola~dello~studente.$

A DICALITATIS

UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2015/2016

Docente: Prof. Ing. Paolo S. VALVO

Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame del 16 novembre 2016 – Risposte

					_	
Cognome		Nome		M	Matricola M	
Lunghezza a [mm]		Massa concentrata m ₁ [kg]		Massa	Massa concentrata m ₂ [kg]	
Carico di riferimento $\overline{p}_{B} [kN]$		Carico di riferimento $\overline{p}_D = \overline{p}_E [kN]$		o Carico	Carico di riferimento $\overline{p}_{\rm G}$ [kN]	
Г						
	Modello semplificato			Modello FEM		
Modo i	Frequenza f _i [Hz]			Frequenza f _i [Hz]		
1						
2						
3						
4						
5						
6						
7						
8						
Quantità	Valore min		Valore max	Valore min	Valore max	
Spost. orizz. u _E [mm]						
Forza normale N _{BD} [mm]						
Forza normale N _{BE} [mm]						
Massa conc.						