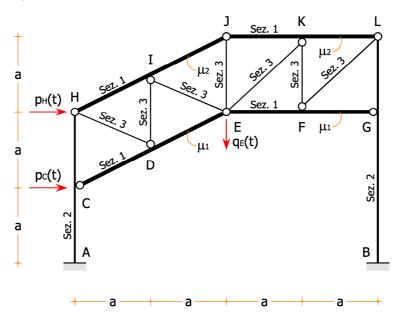
UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

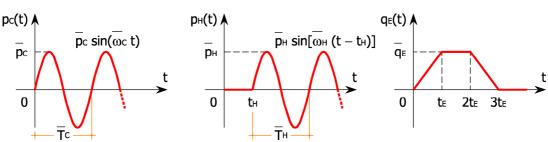
Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2015/2016

Docente: Prof. Ing. Paolo S. VALVO


Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html


Prova d'esame del 9 settembre 2016

La struttura di figura è costituita da travi e aste di acciaio (modulo di Young $E_s = 210$ GPa, densità $\rho_s = 7850$ kg/m³), vincolate fra loro ed al suolo come mostrato. Sulle travi di sezione 1 sono presenti masse distribuite aggiuntive μ_1 e μ_2 .

Sez. 1: IPE 450 Sez. 2: HE 400 A Sez. 3: IPE 240

Sulla struttura agiscono i carichi dinamici $p_C(t)$, $p_H(t)$ e $q_E(t)$ definiti dai grafici sottostanti.

Si assuma un rapporto di smorzamento costante per tutti i modi pari a $\xi = 5\%$.

- a) Assumendo opportune ipotesi semplificative (considerare rigide le travi di sezione 1), modellare la struttura come un sistema meccanico a 4 gradi di libertà. In questo caso,
 - determinare le frequenze naturali ed i corrispondenti modi di vibrare della struttura;
 - determinare la risposta dinamica della struttura per un tempo t compreso tra 0 e $t_{max} = 5$ s;
 - tracciare i grafici degli spostamenti verticale di E ed orizzontale di H in funzione del tempo;
 - determinare il valore della massa distribuita μ_2 per cui la prima frequenza naturale risulti $f_1 = 3$ Hz. [15 punti]

timosse le precedenti inotesi semplificative, analizzare il problema con il metodo degli elementi finiti e

b) Rimosse le precedenti ipotesi semplificative, analizzare il problema con il metodo degli elementi finiti e determinare le stesse quantità di cui al punto a), ad eccezione del valore di μ_2 .

[15 punti]

Valori numerici da utilizzare nel calcolo:

 $a = (M/200) \text{ mm}, \ \mu_1 = (M/250) \text{ kg/m}, \ \mu_2 = (M/100) \text{ kg/m}, \ \overline{p}_C = (M/2000) \text{ kN}, \ \overline{p}_H = (M/4000) \text{ kN}, \ \overline{p}_H = ($

 $\overline{q}_{\epsilon} = (M/2500) \text{ kN}$, dove M = numero di matricola dello studente;

inoltre, $\overline{T}_C = 0.2 \text{ s}$, $\overline{T}_H = 0.4 \text{ s}$, $t_E = 0.2 \text{ s}$, $t_H = 0.2 \text{ s}$.

A DICALITATIS

UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2015/2016

Docente: Prof. Ing. Paolo S. VALVO

Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame del 9 settembre 2016 – Risposte

Cognome		Nome	M	Matricola M	
Lunghezza a [mm]		Massa distribuita μ ₁ [kg/m]		Massa distribuita μ ₂ [kg/m]	
Carico di riferimento \bar{p}_c [kN]		Carico di riferiment \bar{p}_H [kN]	o Carico	Carico di riferimento $\overline{q}_{\!\scriptscriptstyle E}$ [kN]	
Mod		semplificato	Model	Modello FEM	
Modo i	Frequenza f _i [Hz]		Frequenza f _i [Hz]		
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
Quantità	Valore min	Valore max	Valore min	Valore max	
Spost. vert. w _E [mm]					
Spost. orizz. u _H [mm]					
Massa distr. μ ₂ * [kg/m]					