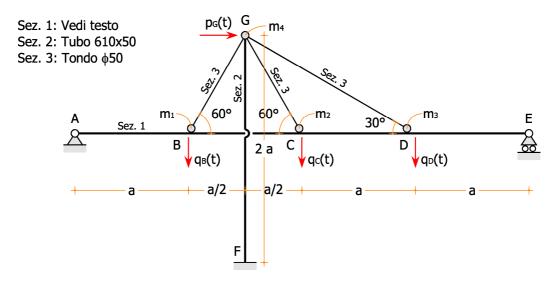
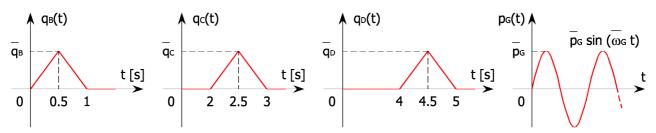
UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2015/2016


Docente: Prof. Ing. Paolo S. VALVO

Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI


Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame del 7 giugno 2016

La struttura di figura è costituita da travi e aste di acciaio (modulo di Young E_s = 210 GPa, densità $\rho_s = 7850 \text{ kg/m}^3$), vincolate fra loro ed al suolo come mostrato. Masse concentrate sono presenti nei punti B, C, D e G. La sezione trasversale 1 ha area $A_1 = 0.300 \text{ m}^2$ e momento di inerzia $J_1 = 0.020 \text{ m}^4$.

Sulla struttura agiscono i carichi dinamici definiti dai grafici sottostanti.

Si assuma un rapporto di smorzamento $\xi = 5\%$ per i primi 3 modi di vibrare e 7% per quelli superiori.

- a) Assumendo opportune ipotesi semplificative (considerare inestensibili le travi flessibili), modellare la struttura come un sistema meccanico a 4 gradi di libertà. In guesto caso,
 - determinare le frequenze naturali ed i corrispondenti modi di vibrare della struttura;
 - determinare la risposta dinamica della struttura per un tempo t compreso tra 0 e $t_{max} = 10$ s;

 - tracciare i grafici dello spostamento verticale di C e di quello orizzontale di G in funzione del tempo; determinare il valore del momento di inerzia J_1^* per cui la prima frequenza naturale risulti $f_1 = 10$ Hz.

b) Rimosse le precedenti ipotesi semplificative, analizzare il problema con il metodo degli elementi finiti e determinare le stesse quantità di cui al punto a), ad eccezione del valore di J₁*.

[15 punti]

Valori numerici da utilizzare nel calcolo:

$$a = (M/100) \text{ mm}, m_1 = m_3 = (M/25) \text{ kg}, m_2 = (M/50) \text{ kg}, m_4 = (M/125) \text{ kg},$$

$$\overline{q}_{_B}=\overline{q}_{_C}=\overline{q}_{_D}=$$
 (M / 1250) kN , $\overline{p}_{_G}=$ (M / 8000) kN , dove M = matricola; inoltre, $\overline{\omega}_{_G}=$ 10 π rad / s .

ANS Z. AN

UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2015/2016

Docente: Prof. Ing. Paolo S. VALVO

Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame del 7 giugno 2016 - Risposte

110	a a csaiii	c uci / giugiio	ZOIO KISP	OSIC	
Cognome		Nome	N	Matricola M	
Lunghezza a [mm]		Carico di riferimento $\overline{q}_B = \overline{q}_C = \overline{q}_D$ [kN]	o Carico	Carico di riferimento $\bar{p}_{_{G}}$ [kN]	
Massa concentrata $m_1 = m_3 [kg]$		Massa concentrata m ₂ [kg]	Massa	Massa concentrata m ₄ [kg]	
	Modell	o semplificato	Mode	Modello FEM	
Modo i	Frequenza f _i [Hz]		Frequenza f _i [Hz]		
1					
2					
3					
4					
5					
6					
7					
8					
Quantità	Valore mir	Valore max	Valore min	Valore max	
Spost. vertic. w_C [mm]					
Spost. orizz. u _G [mm]					
Mom. inerzia J ₁ * [mm ⁴]					