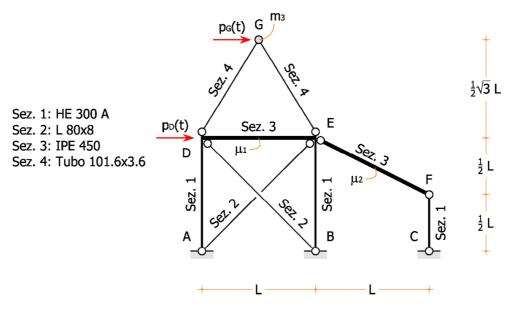
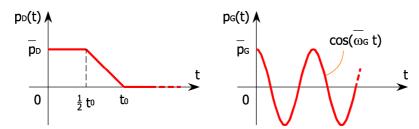
UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2014/2015


Docente: Prof. Ing. Paolo S. VALVO

Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI


Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame del 25 febbraio 2016

La struttura di figura è costituita da travi e aste di acciaio (modulo di Young $E_s = 210$ GPa, densità $\rho_s = 7850$ kg/m³), vincolate fra loro ed al suolo come mostrato. Le travi di sezione 3 hanno masse aggiuntive per unità di lunghezza μ_1 e μ_2 ; in G è presente una massa concentrata m_3 .

Sulla struttura agiscono i carichi dinamici $p_D(t)$ e $p_G(t)$ definiti dai grafici sottostanti.

Si assuma un rapporto di smorzamento ξ pari al 5% per i primi 4 modi di vibrare e al 10% per i modi successivi.

- a) Assumendo opportune ipotesi semplificative (<u>considerare rigide le aste di sezione 3</u>), modellare la struttura come un sistema meccanico a 4 gradi di libertà. In questo caso,
 - determinare le frequenze naturali ed i corrispondenti modi di vibrare della struttura;
 - determinare la risposta dinamica della struttura per un tempo t compreso tra 0 e $t_{max} = 5$ s;
 - tracciare i grafici degli spostamenti orizzontali dei punti D e G in funzione del tempo;
 - determinare il valore della massa m_3 per cui la <u>seconda</u> frequenza naturale risulti $f_2 = 12$ Hz.

[15 punti]

b) Rimosse le precedenti ipotesi semplificative, analizzare il problema con il metodo degli elementi finiti e determinare le stesse quantità di cui al punto a), ad eccezione del valore di μ_1 .

[15 punti]

Valori numerici da utilizzare nel calcolo:

$$L = (M/125) \ mm, \ \mu_1 = (M/62.5) \ kg \ / \ m \ , \ \mu_2 = (M/250) \ kg \ / \ m \ , \ m_3 = (M/80) \ kg \ ,$$

$$\overline{p}_D = (M/2000) \text{ kN}, \ \overline{p}_G = (M/5000) \text{ kN}, \text{ dove } M = \text{matricola}; \text{ inoltre, } t_0 = 0.4 \text{ s e } \overline{\omega}_G = \pi \text{ rad / s .}$$

A DICALITATIS

UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2014/2015

Docente: Prof. Ing. Paolo S. VALVO

Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame del 25 febbraio 2016 - Risposte

Cognome		Nome		Matricola M		
Lunghezza L [mm]		Massa distribuita μ ₁ [kg/m]		Massa distribuita μ ₂ [kg/m]		
Massa concentrata m ₃ [kg]		Carico di riferimento $\bar{p}_{_D}$ [kN]		Carico di riferimento $\bar{p}_{_{G}}$ [kN]		
	Modell		mplificato	Model	Modello FEM	
Modo i	Frequenza f _i [Hz]			Frequenza f _i [Hz]		
1			•		-	
2						
3						
4						
5						
6						
7						
8						
Quantità	Valore n	nin	Valore max	Valore min	Valore max	
Spost. orizz. u _D [mm]						
Spost. orizz. u _G [mm]						
Massa conc. m ₃ * [kg]						