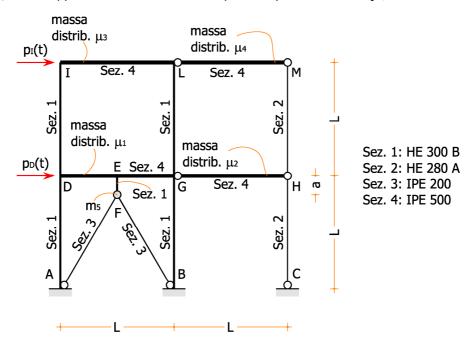
UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2014/2015

Docente: Prof. Ing. Paolo S. VALVO


Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html


Prova d'esame del 2 luglio 2015

La struttura di figura è costituita da aste e travi di acciaio (modulo di Young $E_s=210$ GPa, densità $\rho_s=7850$ kg/m³), vincolate fra loro ed al suolo come mostrato. Sulle travi di sezione 4 sono presenti le masse aggiuntive per unità di lunghezza μ_1 , μ_2 , μ_3 e μ_4 ; nella cerniera F è presente la massa concentrata m_5 .

Si assuma valida l'ipotesi di Rayleigh, per cui [C] = α [M] + β [K] con α = 0.4 e β = 0.002, tenendo conto, tuttavia, che il rapporto di smorzamento non possa superare il valore ξ_{max} = 15%.

Sulla struttura agiscono i carichi dinamici definiti dai grafici sottostanti.

- a) Assumendo opportune ipotesi semplificative (<u>considerare inestensibili le travi di sezione 1 e rigide quelle di sezione 4</u>), modellare la struttura come un sistema meccanico a 5 gradi di libertà. In questo caso,
 - determinare le frequenze naturali ed i corrispondenti modi di vibrare della struttura;
 - determinare la risposta dinamica della struttura per un tempo t compreso tra 0 e t_{max} = 5 s;
 - tracciare i grafici degli spostamenti orizzontali dei punti D ed I in funzione del tempo;
 - determinare, se possibile, il valore della rigidezza estensionale delle aste di sezione 3, EA_3 , tale che la prima frequenza naturale risulti $f_1 = 5$ Hz. [15 punti]
- b) Rimosse le precedenti ipotesi semplificative, analizzare il problema con il metodo degli elementi finiti e determinare le stesse quantità di cui al punto a), ad eccezione del valore di EA₃.

[15 punti]

Valori numerici da utilizzare nel calcolo:

$$\mu_{1} = (\text{M}\,/\,100)\,\text{kg}\,/\,\text{m}\,,\; \mu_{2} = \mu_{3} = (\text{M}\,/\,200)\,\text{kg}\,/\,\text{m}\,, \mu_{4} = (\text{M}\,/\,400)\,\text{kg}\,/\,\text{m}\,,\; m_{5} = (\text{M}\,/\,250)\,\text{kg}\,,$$

 $L=(M/\,125)~mm~,~a=(1-\cos30^\circ)~L~,~~\overline{p}_{_D}=(M/\,3000)~kN~,~~\overline{p}_{_I}=(M/\,2000)~kN~,~dove~M=~matricola.$

A DICALLANDS

UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2014/2015

Docente: Prof. Ing. Paolo S. VALVO

Co-docenti: Prof. Ing. Walter SALVATORE, Dott. Ing. Francesco MORELLI

Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame del 2 luglio 2015 - Risposte

Cognome		Nome			Matricola M		
Massa distribuit μ ₁ [kg/m]		Massa distribuita $\mu_2 = \mu_3 \text{ [kg/m]}$		Massa distribuita μ ₄ [kg/m]		Massa concentrata m₅ [kg]	
Lunghezza L [mm]	Lı	Lunghezza a [mm]		Carico di riferimento \bar{p}_D [kN]		Carico di riferimento $\bar{p}_{_{\rm I}}$ [kN]	
	Modello semplificato			Modello FEM			
Modo i	Frequenza f _i [Hz]			Frequenza f _i [Hz]			
1							
2							
3							
4							
5							
6							
7							
8							
Quantità	Valore m	nin Valor	e max	Va	lore mi	n	Valore max
Spostamento u _D [mm]							
Spostamento u _I [mm]							
Rig. estension.		1					

EA₃ [kN]