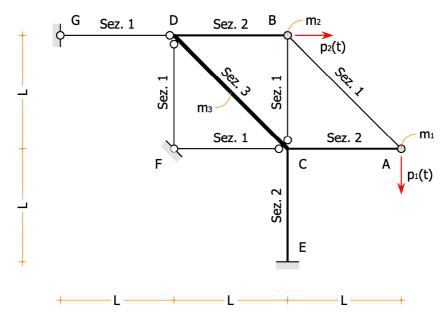
UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)


Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2013/2014

Docente: Prof. Ing. Paolo Sebastiano VALVO Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame dell'11 giugno 2014

La struttura di figura è costituita da aste e travi di acciaio (modulo di Young $E_s = 210 \text{ GPa}$, densità $\rho_s = 7850 \text{ kg/m}^3$) e travi rigide, vincolate fra loro ed al suolo come mostrato.

Sez. 1: Tubo quadrato 150x150x12

Sez. 2: IPE 300 Sez. 3: Rigida

Sulla struttura agiscono i seguenti carichi dinamici:

$$p_1(t) = I_{n1}\delta(t)$$
, $p_2(t) = \overline{p}_2 \sin(20\pi t) \exp(-\alpha t)$,

dove $\delta(t)$ è la Delta di Dirac e $\alpha = 1/s$.

Il rapporto di smorzamento può essere assunto pari a ξ = 5% costante per tutti i modi di vibrare.

- a) Assumendo opportune ipotesi semplificative, modellare la struttura come un sistema meccanico a 4 gradi di libertà. In questo caso,
 - determinare le frequenze naturali ed i corrispondenti modi di vibrare della struttura;
 - determinare la risposta dinamica della struttura per un tempo t compreso tra 0 e t_{max} = 10 s;
 - tracciare i grafici degli spostamenti nel tempo dei punti di applicazione dei carichi.

[15 punti]

b) Rimosse le precedenti ipotesi semplificative, con l'ausilio dell'elaboratore elettronico, analizzare il problema con il metodo degli elementi finiti e determinare le stesse quantità di cui al punto a).

[15 punti]

Valori numerici da utilizzare nel calcolo:

$$L = (0.01 \text{ M}) \text{ mm}, \ m_1 = (0.02 \text{ M}) \text{ kg}, \ m_2 = (0.01 \text{ M}) \text{ kg}, \ m_3 = (0.04 \text{ M}) \text{ kg},$$

$$I_{p_1}$$
 = (0.02 M) N s , $~\overline{p}_{_2}$ = (0.5 M) N , dove M = numero di matricola.

UNIVERSITÀ DI PISA – Dipartimento di Ingegneria Civile e Industriale (DICI)

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2013/2014

Docente: Prof. Ing. Paolo Sebastiano VALVO Web: www.ing.unipi.it/paolovalvo/dds.html

Prova d'esame dell'11 giugno 2014 - Risposte

Cognome	Nome	Matricola M	
Massa m ₁ [kg]	Massa m ₂ [kg]	Massa m ₃ [kg]	
Lunghezza L [mm]	Impulso I _{p1} [kN s]	Carico di riferimento \overline{p}_2 [kN]	

	Modello semplificato		Modello FEM	
Modo i	Frequenza f _i [Hz]	Periodo T _i [s]	Frequenza f _i [Hz]	Periodo T _i [s]
1				
2				
3				
4				
5				
6				
7				
8				
Quantità	Valore min	Valore max	Valore min	Valore max
Spostamento W _A [mm]				
Spostamento u _B [mm]				