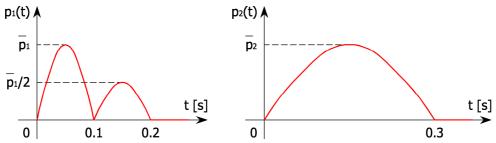
UNIVERSITÀ DI PISA - Facoltà di Ingegneria


Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2011/2012


Docente: Prof. Ing. Paolo Sebastiano VALVO Web: www.dic.unipi.it/paolovalvo/dds.html

Prova d'esame del 4 febbraio 2012

Lo schema di figura rappresenta il telaio di una struttura mista di calcestruzzo armato (modulo di Young E_c = 35 GPa, densità ρ_c = 2500 kg/m³) e acciaio (modulo di Young E_s = 210 GPa, densità ρ_s = 7850 kg/m³). Le travi EFGHI e JKL sono rigide ed hanno masse m_1 ed m_2 , rispettivamente, uniformemente distribuite.

Nelle sezioni E e J delle travi rigide sono applicati due carichi impulsivi le cui leggi temporali, mostrate nei grafici sottostanti, sono date da opportuni archi di sinusoide.

- a) Assumendo opportune ipotesi semplificative, modellare la struttura come un sistema meccanico a 4 gradi di libertà. In questo caso,
 - scrivere le equazioni d'equilibrio dinamico che governano il problema;
 - determinare le frequenze naturali della struttura;
 - calcolare il valore dell'impulso di ciascuno dei due carichi assegnati.

[15 punti]

- b) Con l'ausilio dell'elaboratore elettronico, modellare il problema con il metodo degli elementi finiti. In particolare,
 - determinare le frequenze naturali ed i corrispondenti modi di vibrare della struttura;
 - determinare la risposta dinamica della struttura nell'intervallo di tempo da 0 a 2 s, assumendo un rapporto di smorzamento $\xi=10\%$ per i primi 2 modi e $\xi=5\%$ per i rimanenti modi;
 - con riferimento all'analisi eseguita al punto precedente, tracciare i diagrammi degli inviluppi delle caratteristiche della sollecitazione; [15 punti]

Valori numerici da utilizzare per il calcolo:

 $m_1 = 2$ $m_2 = (M/5)$ kg, $\bar{p}_1 = 2$ $\bar{p}_2 = (M/2000)$ kN, dove M = numero di matricola dello studente.

UNIVERSITÀ DI PISA – Facoltà di Ingegneria

Dinamica delle Strutture (CdLM in Ingegneria Edile e delle Costruzioni Civili)

A.A. 2011/2012

Docente: Prof. Ing. Paolo Sebastiano VALVO Web: www.dic.unipi.it/paolovalvo/dds.html

Prova d'esame del 4 febbraio 2012 - Risposte

Cognome	Nome	Matricola M

Massa trave EFGHI m ₁ [kg]	Inerzia rotazionale trave EFGHI I ₁ [kg m ²]	Massa trave JKL m ₂ [kg]	Inerzia rotazionale trave JKL I ₂ [kg m ²]
Valore massimo carico in E \bar{p}_1 [kN]	Impulso del carico in E I _{p1} [kN s]	Valore massimo carico in J $\bar{p}_2 \text{ [kN]}$	Impulso del carico in J

	Analisi dinamica semplificata		Analisi dinamica FEM	
Modo i	Frequenza f _i [Hz]	Periodo T _i [s]	Frequenza f _i [Hz]	Periodo T _i [s]
1				
2				
3				
4				
5				
6				

Passo analisi time-history Δt [s]	Numero di passi n	Valore min forza normale N _{min} [kN]	Valore max forza normale N _{max} [kN]
Valore min forza di taglio	Valore max forza di taglio	Valore min momento flettente	Valore max momento flettente
T _{min} [kN]	T _{max} [kN]	M _{min} [kN m]	M _{max} [kN m]