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A stigmergy-based analysis of city hotspots to
discover trends and anomalies in urban

transportation usage
Antonio L. Alfeo, Mario G. C. A. Cimino, Sara Egidi, Bruno Lepri, and Gigliola Vaglini

Abstract—A key aspect of a sustainable urban transportation
system is the effectiveness of transportation policies. To be
effective, a policy has to consider a broad range of elements, such
as pollution emission, traffic flow, and human mobility. Due to the
complexity and variability of these elements in the urban area, to
produce effective policies remains a very challenging task. With
the introduction of the smart city paradigm, a widely available
amount of data can be generated in the urban spaces. Such data
can be a fundamental source of knowledge to improve policies
because they can reflect the sustainability issues underlying the
city.

In this context, we propose an approach to exploit urban
positioning data based on stigmergy, a bio-inspired mechanism
providing scalar and temporal aggregation of samples. By em-
ploying stigmergy, samples in proximity with each other are
aggregated into a functional structure called trail. The trail
summarizes relevant dynamics in data and allows matching them,
providing a measure of their similarity. Moreover, this mechanism
can be specialized to unfold specific dynamics.

Specifically, we identify high-density urban areas (i.e.
hotspots), analyze their activity over time, and unfold anomalies.
Moreover, by matching activity patterns, a continuous measure
of the dissimilarity with respect to the typical activity pattern is
provided. This measure can be used by policy makers to evaluate
the effect of policies and change them dynamically. As a case
study, we analyze taxi trip data gathered in Manhattan from
2013 to 2015.

Index Terms—Green intelligent transportation systems (ITS),
Global Positioning System, Stigmergy, Emergent Phenomena,
Hotspot, Pattern Analysis, Taxi-GPS traces.

I. INTRODUCTION AND MOTIVATION

SMARTNESS and sustainability are two key aspects of the
forthcoming transportation systems. Smartness provides

transportation monitoring and control with qualities like real-
time sensing and fast decision making. Sustainability aims to
manage travel demand efficiently by means of environmen-
tally friendly strategies, providing transportation systems with
policies for long-term economic suitability [16]. Specifically,
a sustainable urban development demands adequate policy in-
struments aimed to handle and mitigate the increasing volume
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of traffic congestion, carbon emission, and air pollution. One
of the most frequently used policy tools for the measurement
and evaluation of transportation sustainability performance are
indicators. Indicators can be defined as quantitative measures
aimed to explain and communicate complex phenomena sim-
ply, including trends and progress over time [19]. In order to
provide effective measures of sustainability of transportation
activities, it is essential to define indicators purpose and scope.
During the last two decades, a number of international initia-
tives addressed the development of indicators aimed to achieve
a more sustainable transportation on the local, regional, and
global levels, by involving both scientific community and
policy-makers [31]. However, as of today, there is no standard
or common agreement about the set of indicators to be used
to assess transportation sustainability. Many works in the field
perform an impact-based classification by employing a three-
dimensional framework based on economic, environmental,
and social impacts [17]. The proposed indicators are in general
calculated by exploiting commonly available data sources [31].
Thanks to the pervasive technology supporting the smart city
strategy, some of these indicators may be calculated via big
data fed by on-board or fixed sensors. As an example, data
obtained by smart cards [25] can be used to describe the
characteristics of public transit usage, such as the number
of trips for different transit modes, and travel time distribu-
tion for all transit modes and user types. Another example
could be the GPS-enabled vehicles, which can provide a
more comprehensive view of the factors shaping transportation
emissions and efficiency, by analyzing passenger occupancy
and trip density by location and time [26]. Finally, air quality
monitoring systems can be used to monitor local pollution
emission([27],[29]) and noise emission [28]. These sources
allow enhancing the precision of the investigation, providing
insights about sustainability issues on specific urban locations
and the moment in time. According to [30], [31], [32],
[33], some of the widely accepted indicators assessing the
sustainability of transportations are derivable from localized
sensors data. Below we present a list of indicators arranged
according to their addressed purpose.

1) Transportation system efficiency:

a) Total vehicle-mileage traveled by motorized (pri-
vate and public) and non-motorized (bikes and
pedestrians) traffic participants;

b) Portion of travels made by private car;
c) Total vehicle-mileage traveled in urban-peak con-
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ditions;
d) Delay per trip;
e) Vehicle occupancy per travel (as passenger-

vehicle);
f) Frequency and mean duration of traffic conges-

tions;
2) Pollutions levels:

a) Total emissions of greenhouse gases (e.g. CO2);
b) Total emissions of air pollutants (e.g. PM10);
c) Total emissions of noise pollutants;

3) Land use:
a) Percentage of population living in proximity to

public transportation facilities (e.g. transit station);
b) Total land area consumed by transportation infras-

tructure;
c) Total land area consumed by cars;

According to the moment in time and the location ob-
served, an indicator may show different patterns. The

detection of significant patterns usually involves a complex
system modeling, due to largeness and complexity of data un-
derlying the indicator. Thus there is the need for a data mining
algorithm aimed to provide pattern identification, detection
of behavioral regularities, and comparison between different
traffic phenomena [18].

In this paper, we propose a novel approach to analyze urban
positioning data. Both complexity and largeness of data can be
handled by employing computational techniques belonging to
the emergent paradigm. Emergent paradigms allow avoiding
the explicit modeling of dynamics, which works only under the
assumption formulated by the designer. Emergent paradigms,
instead, offer model-free computational approaches, charac-
terized by adaptation, autonomy, and self-organization of data
[8].

In particular, the emergent paradigm provides a biologi-
cally inspired aggregation mechanism known as stigmergy.
By using stigmergy each sample position is transformed into
a digital pheromone deposit. Deposits accumulate with each
other according to their proximity while progressively evapo-
rating. This simple mechanism intrinsically embodies the time
domain, thus it is used to unfold significant spatiotemporal
dynamics in the data [9].

Among all the available sources of movement data for
smart city application, location aware vehicles provide us the
opportunity to help urban planners and policy makers in miti-
gating traffic, planning for public services and resources, and
properly manage infrequent events [23]. However, both public
transportation and private vehicles provide quite predictable
GPS traces, because they are due to predetermined routes or
personal routines (i.e. to and from work). On the other hand,
GPS-enabled taxis, represent both a transit-complementary
door-to-door transportation mode and a source of real-time
human mobility information [1]. Indeed, taxicabs play a
prominent role as a transportation mode in metropolitan areas,
e.g., in New York City, over 100 companies operate more than
13,000 taxicabs with a daily demand of 660,000 passengers
[21]. Moreover, by continuously serving a wide diversity of
passengers in the city, taxis GPS traces can provide a detailed

glimpse into motivation and characterization of populations
urban mobility. However, regular taxicab services becomes
inefficient during urban-peak conditions, e.g., extreme weather
or special events ([22], [24]), producing unnecessary traffic,
pollution, energy consumption, and causing the increase of
passenger’s waiting time [44]. Thus, further investigation
aimed at analyzing taxi-based transportation system is needed.
In this context, an exhaustive survey of taxis’ trip data analysis
is provided in [2]. According to Castro et al, existing works
can be divided into 3 categories: (i) Social Dynamics, which
aims to analyze the collective behavior of urban population,
detect the most visited areas in the city (hotspots), characterize
their functionalities, and study the mutual relationships among
different urban areas; the purpose of this kind of analysis
is to determine the effectiveness of transportation systems
and to provide guidance for needed improvements; (ii) Traffic
Dynamics, i.e. the analysis of the traffic flow through the city
road network, providing results about congestion durations and
levels in a given city area; congestions have a remarkable
impact over the travel time and on the occurrence of adverse
events (e.g., accidents), and can be used to estimate pollution
levels [36]; and (iii) Operational Dynamics, i.e. the analysis
of taxis trajectory aimed to investigate taxi drivers behavior,
providing route planning insights for unfolding anomalies in
urban mobility. According to the authors in [2], many works
in the field deal with more than one of the proposed categories
in their analysis, and this is the case of our work. Specifically,
we exploit taxis’ trip data provided by Taxi and Limousine
Commission (TLC) of New York City. All taxis of NYC are
equipped with FCD (floating car data) devices, which manage
localization and card payments data, and enable taxicab drivers
and passengers to receive information from the Taxi and
Limousine Commission [14]. FCD records include pick-up
and drop-off positions, timestamp, and number of passengers,
which feed the Taxi Trip Origin-Destination (OD) dataset.We
analyze it in order to uncover city hotspots, characterize human
mobility patterns, and detect anomalous occurrences by using
an approach based on stigmergy.

The paper is organized as follows. In section 2 we discuss
the related works. In section 3 we present our approach. We
detail data preprocessing and experimental setup in section 4.
In section 5 results obtained by analyzing taxi traces gathered
in NYC during the years 2013, 2014 and 2015 are shown.
Finally, we conclude our work and discuss future avenues of
research in section 6.

II. RELATED WORK

Recently, the wide availability of taxi trip data has produced
a significant number of works aimed to mine urban dynamics
by exploiting this kind of data.

In [38] the authors use non-negative matrix factorization
(NMF) algorithm to decompose taxi activity levels and extract
three basic patterns. Those patterns represent respectively:
(i) commuting between home and workplace, (ii) business
traveling between two workplaces, and (iii) leisure trips from
or to other places. Furthermore, authors model the relative
daily deviation of the traffic flow in each category. In [35]
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authors analyze taxi traces in order to model the typical
pattern of passenger flow in an urban area; by applying this
model authors were able to compute the probability that an
event happened, and measure the impact of the event by
analyzing anomalous patterns in passenger flow via Discrete
Fourier Transform. An Interactive Voting-based Map Matching
Algorithm is used in [41] to map GPS trajectories. This
mapping is aimed to characterize typical drivers behaviors and
discover abnormal ones. Finally, the authors mine the cause
of the anomaly by checking data gathered by social networks.

One of the main issues concerning the analysis of this kind
of data is their dimensionality. Many approaches handle it by
focusing on specific areas (hotspots) whose high concentra-
tion of events or samples can summarize the most relevant
dynamics occurring in data [43], [37].

In the literature, urban hotspots are typically divided in two
categories: (i) regular and (ii) occasional. Areas comprising
many points of interest such as movie theaters, commercial
buildings, hospitals, schools, colleges, etc. are prime examples
of regular hotspots. Occasional hotspots are those areas where
any incident has taken place. An incident is defined as an
unexpected event that temporarily disrupts the mobility flow,
e.g., car crash, marathon, VIP passing area, etc. However, the
most of the studies firstly consider regular hotspots. Li. et
al [39] proposed and developed an improved auto-regressive
integrated moving average (ARIMA) for detecting urban mo-
bility hotspots using taxi GPS traces; moreover, the patterns
of pick-ups occurring in these city locations are extracted and
analyzed. Other works, such as the one from Makrai [40],
provide a statistical approach for the detection of hotspots
in New York City by means of a distributed environment.
Authors in [10] use OPTICS in order to exploit taxi drop-
off positions, extracting hotspots from density-connected point
clusters. Cluster results are then assigned as daily taxi drop-
off hotspots. Recently, Lu et al. [42] developed a monitoring
system performing spatiotemporal analysis on taxi trip data
to find seasonal hotspots. This result is achieved by using
DBSCAN clustering algorithm with pick up and drop-off
locations every fixed amount of time.

III. APPROACH DESCRIPTION

Our idea is to represent taxi traces as deposits of
pheromones, akin to the ones ants release when exploring
and searching for food. Isolated pheromones progressively
evaporate and disappear, whereas pheromones which are sub-
sequently deposited in proximity with each other aggregate as
a trail. The trail guides the ants while seeking for food, pro-
viding them an effective self-organization mechanism, known
as stigmergy [6]. The emulation of this mechanism in the
context of data processing enables the unfolding of spatial
and temporal dynamics in data [9] by providing information
self-organization [8]. Specifically, the principle of stigmergy is
used (i) to discover a set of locations (hotspots) characterized
by the highest spatiotemporal density in data; (ii) to unfold
hotspot activity patterns, (iii) to match those patterns in order
to detect anomalies in hotspot activity. The overall processing
schema has been developed and integrated with the MATLAB
framework.

A. Hotspot Discovery

With the aim of discovering locations characterized by high
density of taxi passengers activity (activity, for short), we
exploit the number of people being picked up or dropped
off in a given time slot and in a given location. During each
step of the analysis, samples corresponding to a given time
slot are provided to the system and processed by a four-
stages procedure. At the beginning, the Smoothing process
removes irrelevant samples’ values and highlights significant
ones (Fig.1b), by treating them with a sigmoidal function. The
marking process releases a mark in a tridimensional spatial
environment in correspondence of each smoothed sample
position (Fig.1c). Each mark is defined by a truncated cone
with a given width and an intensity (height) equal to the
sample value. The marks aggregate form the trail, whose
intensity is subject to evaporation, i.e., the trail intensity is
decreased by a constant value δ at each step of the analysis
(Fig.1d). Eq. 1 describes the trail T at time instant i.

Ti = (Ti−1 − δ) +Marki (1)

Due to aggregation and evaporation provided by the trailing
process, sparse marks progressively disappear. On the contrary,
subsequent deposits in proximity with each other counteract
the evaporation producing a stable trail, which highlights
spatiotemporal density in data.

The hotspots are determined as the overlap of the city
areas corresponding to the most relevant trails, obtained by
analyzing data corresponding to early morning (i.e., 3a.m.-
8a.m.), morning (i.e., 9am-2pm), afternoon/evening (i.e., 3pm-
8pm), and night (i.e., 9pm-2am) time slots. Each hotspot is
represented by a set of coordinates that bound a city area inside
a polygon. The hotspots identified in Manhattan (New York
City) are shown in Fig. 1e. Their locations correspond to East
Harlem - Upper East Side (A), Midtown East (B), Broadway
(C), East Village - Gramercy - MurrayHill (D), Soho - Tribeca
(E), Chelsea (F) and Time Square - Midtown West - Garment
(G).

B. Stigmergic Receptive Field

The result of the hotspot identification is a set of urban
areas in which the most relevant activity dynamics occur. For
each of them, we extract the activity time series by gathering
the amount of activity occurred in the hotspots during the
day. The hotspot activity time series are analyzed by means
of the Stigmergic Receptive Field (SRF), a stigmergy-based
processing schema which provides a similarity measure of a
given couple of time series (a(k) and ā(k) in Fig. 2).

The overall architecture of the SRF is composed by a five-
stages processing pipeline, shown in Fig. 2.

Input samples are firstly treated by the Clumping process. It
is aimed to reduce microfluctuation in data while highlighting
the dynamics occurring among relevant information levels.
In our application, 3 levels are used to specify the activity
behaviors, namely Low, Medium and High. The Clumping
process is implemented by treating each input sample with a
double sigmoid function, which is parametrized by means of
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Fig. 1. The overall process of hotspots discovery in Manhattan.

its inflection points (α1, β1, α2, β2). In correspondence of each
clumped sample, a mark is released in a bidimensional virtual
environment by the Marking process. The mark is defined as
a trapezoid with given intensity (i.e., height) and width (ε).
The Trailing process handles the aggregation of the marks in
the trail, and the trail temporal decay, i.e., the decrease of its
intensity of a given amount δ at each step of time. The trail
can be considered as a short term memory summarization of
the spatiotemporal dynamism occurring in data.

Both time series (a(k), ā(k)) provided to the SRF undergo
these processing stages independently, until the Similarity pro-
cess compares their trails (T1, T2) using the Jaccard coefficient
[3] as defined in Eq. 2.

S =
|T1 ∩ T2|
|T1 ∪ T2|

(2)

The provided similarity values are between 0 (completely
different trails) and 1 (identical trails). Finally, the Activation
process transforms the similarity values by treating them with
a sigmoidal function (Eq. 3). Specifically, activation process
lowers insignificant similarity values and enhances relevant
ones depending on the values of the sigmoid inflection points
(αa, βa).

f(x, αa, βa) =
1

(1 + e−αa(x−βa))
(3)

In order to have an effective sample processing the SRF
should be properly parameterized. For example, low trail evap-
oration causes early activation, whereas high trail evaporation
generates a trail consisting of the latest marks only, and
preventing pattern reinforcement. Specifically, the SRF param-
eters are: (i) the clumping inflection points αc1, βc1, αc2, βc2;
(ii) the mark width ε; (iii) the trail evaporation δ; and (iv) the
activation inflection points αa, βa. The SRF parameters are
adjusted by the Adaptation process. It uses the Differential
Evolution (DE) algorithm [37], in order to minimize Mean
Square Error (MSE, Eq. 4), which is computed as the differ-
ence between desired (S′(h∗)) and actual (S(h∗)) output value
on a training set of N labeled couples of activity time series
({a(k∗), S′(h∗)}).

Fitness =

∑N
i=1(|S(i∗)− S′(i∗)|2)

N
(4)

C. Stigmergic Perceptron

Let us suppose to have a pure form time series which
embodies a behavioral class (i.e., an archetype). The SRF
can detect this specific behavior in the actual time series,
by processing it together with the archetype. An example
of behavioral class in our domain is Rush-Hour (Fig. 4a),
which correspond to the behavior of the activity occurring
in the hotspot when people movement is at its highest rate.
Other classes provided are Asleep (Fig. 4g), i.e., the hotspot
at its lowest activity level; Falling (Fig. 4f), i.e., the transition
between regular activity and its calm down; Awakening (Fig.
4e), i.e., the waking up of urban activity following a calm
phase; Flow (Fig. 4d), i.e., the hotspot at its operating capacity;
Chill (Fig. 4c), i.e., the calm down of the hotspot activity after
a rush hour; Rise (Fig. 4b), i.e., the transition to the most
intense activity level.

A set of SRFs aimed to recognize these archetypes can be
arranged into a connectionist topology, obtaining a Stigmergic
Perceptron [5]. By forming a linear combination of the SRFs
outcomes, the Stigmergic Perceptron provides an assessment
of the current behavior of the input time series among all the
classes provided. Specifically, the output of the SP is calcu-
lated as the average of the SRFs enumerations (represented
as 1-to-7 in our application case) weighted by their output
similarities (Eq. 5). The SP output is called activity level and
is defined between 0 and N (i.e., the number of archetypes).

ActivityLevel =

∑N
i=1(S(i) ∗ i)∑N
i=1(S(i))

(5)

In order to prevent multiple activations of SRFs in the same
SP, their Adaptation process is a two phases procedure: (i) the
Global Training phase is aimed to provide a suitable inter-
val for each SRFs parameters according to their sensitivity;
specifically, the interval for the evaporation rate, that is the
most sensitive SRF parameter, is determined considering the
narrowest interval including the fitness values above the 90th
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Fig. 2. The architecture of a stigmergic receptive field.

Fig. 3. The progressive decrease of the error in the assessment of the ”Falling”
archetypes (in year2014), during adaptation process.

percentile, while the intervals for the other parameters can be
provided according to the application domain constraints; (ii)
the Local Training phase is aimed to find the optimal values for
every parameter and each SRF by exploiting their Adaptation
process and the interval determined in the Global phase; the
training set for each SRF is made by half signals belonging
to its behavioral class, and half belonging to the behavioral
classes of adjacent SRFs. As an example, the progressive
decrease of the MSE provided by this adaptation phase is
shown in Fig. 3.

A properly trained SP produces a time series of activity
levels by transforming a given time series of activity samples.
The activity levels time series can be considered as a higher
level characterization of the hotspot activity during an entire
day. The source code of our Stigmergic Perceptron has been
publicly released on the MATLAB Central File Exchange [46].

D. Anomaly Degree Computation

In order to detect anomalous activity level patterns, we
employ a further SRF aimed to measure of the similarity

Fig. 4. The overall processing of the activity samples.

between two activity levels time series gathered in different
days (Fig. 4h).

The Adaptation process of this SRF aims to minimize the
difference (in terms of MSE) between computed and ideal
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Fig. 5. Examples of trails generated by the activity level time series gathered
in different working days. Jan-27 seems to be characterized by an anomalous
pattern.

similarity over a training set, by tuning mark width ε, trail
evaporation δ, and activation thresholds αa, βa. The training
set is composed by different (i.e., 900) couples of activity
level time series whose similarity is supposed to be 1, if
they belong to the same activity level behavioral class, 0
otherwise. As an example, an activity level behavioral class
can be “Working-Day” which is a day whose activity is mainly
affected by working routines. Other activity level behavioral
classes provided in our analysis are “Entertainment-Days”
(usually occurring in Fridays and Saturdays) and “Leisure-
Days” (usually occurring in Sundays).

As an example, Fig. 5 shows the activity level obtained
by analyzing activity in the hotspot G in every Tuesday of
January 2015. The corresponding stigmergic trails are shown
beside them. Here, an activity level time series differs from the
other working days shown. Indeed, January 27 is characterized
by an anomaly, due to winter storm ’Juno’ that was hitting the
city during that day.

By exploiting the SRF similarity measure we can match
all the activity level time series of the SRF’s training set and
store their similarity values into a similarity matrix. As an
example, in Fig. 6, we show the similarity matrix obtained
by analyzing patterns gathered during the year 2015. Patterns
are arranged by behavioral class, i.e., Working-Day (days 1-
10), Entertainment-Day (days 11-20), and Leisure-Day (days
21-30). Here, the similarity value obtained by matching two
patterns gathered in different days is represented by the color
of the corresponding box. The whitest the box, the higher
the similarity. As expected, the similarity values appear to be
higher only with couples of days belonging to the same activity
level behavioral class.

This similarity matrix is processed by a relational clustering

Fig. 6. Similarity matrix obtained by analyzing patterns gathered during year
2015.

technique (Fig. 4i) in order to group similar daily activity lev-
els. Specifically, we employ Fuzzy C-Means using as number
of clusters the number of daily activity behaviors taken into
account in the analysis (i.e. 3). The fuzzy clustering generates,
for each activity level time series, a membership degree for
each behavioral class. We can determine which are the most
representative days for each behavioral class by selecting the
activity level time series which are closest to the corresponding
cluster centroid in terms of euclidean distance.

An activity level time series obtained by a typical day is
expected to exhibit high similarity with respect to the activity
level time series obtained by the most representative days of
its behavioral class. Thus, we compute the Anomaly Index
of current day d by exploiting the average of its similarity
S(d, i) with respect to its most representative N (i.e., 5) days,
as detailed in Eq. 6. The Anomaly Index is defined between 0
(typical daily behavior) and 1 (very anomalous daily behavior).

AnomalyIndex(d) = |
∑N
i=1(S(d, i))

N
− 1| (6)

In order to discern typical days from anomalies, an Anomaly
Index threshold for each activity level behavioral class must
be defined. These thresholds have been determined by using
DE (Fig. 4m) in order to minimize the classification error (i.e.,
the percentage of correctly classified days) over all the days of
the year under analysis, given a set of known anomalies. As an
example, Fig. 7 shows the classification of each day gathered
during the year 2015. Known anomalies are characterized by
a circle. The Anomaly Index thresholds are in dashed line.

IV. EXPERIMENTAL SETUP

We analyze data provided by the Taxi and Limousine
Commission of New York City, containing details about all
taxi trips occurred during 2013, 2014 and 2015 in Manhat-
tan [12]. Each trip is reported with its taxi ID, number of
passengers, together with latitude, longitude, and time-stamp
of pick-up and drop-off. Data have been pre-processed in
order to (i) remove missing values and (ii) discretize data in
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Fig. 7. Classification of anomalies (circle) and typical days (stars) obtained
analyzing data gathered during 2015.The thresholds are reported in dashed
line.

spatiotemporal buckets characterized by length and width of
10 foot, and duration of 5 minutes.

For the hotspots investigation, the period under analysis
comprised both February and June. This period has been
chosen since it can capture different seasonal behavior without
being influenced by the presence of many holidays.

The activity time series extracted for each observed day has
been normalized by using the min-max procedure.

Both global and local training phases of the SP are provided
with a training set generated by applying random spatial noise
and temporal shift to the pure archetype time series. The SP
training set is composed of 70 time series (10 for each SRF),
and the expected similarity is 1 if the current time series has
been generated by the archetype on which current SRF must
be specialized, 0 otherwise.

The SP outcome is processed by a further SRF, which
is trained to measure activity level time series similarity,
according to the daily behavioral classes provided, namely:
(i) Working days which are expected to fall between Monday
and Tuesday, when commuters and working routines deeply
affects the crowd movements; (ii) Entertainment days, which
are expected to fall on Friday and Saturday, and are charac-
terized by high nocturnal activity due to the nightlife; (iii)
Leisure days, which are expected to fall on Sunday, and are
characterized by minor transportation usage. The training set
is composed of 30 activity level time series, i.e., 10 time series
representing the typical patterns of each behavioral class. The
target similarity of each possible match is 1 if time series falls
in the same behavioral class, 0 otherwise.

The typical pattern of each behavioral class has been
determined by performing an exploratory analysis of the
activity time series according to the following features: (i) A
label (low, medium, high) describing the range of the values
contained in the initial part of the time series; (ii) A label (low,
medium, high) describing the range of the values contained in

the final part of the time series; (iii) The instant in which the
mean value of the whole series is reached (initial and final part
are not considered); (iv) The instant in which the maximum
value of the whole series is reached (initial and final part are
not considered); (v) The duration of the time series at its higher
level. We select different activity series for each behavioral
class (Working, Entertainment, and Leisure) in order to extract
these features. A suitable range of values for each feature and
each behavioral class is provided by choosing the minimum
and the maximum among the values obtained. By means of this
features range, we can describe the overall typical pattern of
each behavioral class. Moreover, the time series whose features
exceed the features range of its expected behavioral class, can
be annotated as an anomaly. As an example, the features of an
activity time series gathered during a Thursday, are expected
to fit the feature ranges of Working-Day behavioral class. If
it does not occur the time series is annotated as an anomaly.

V. RESULTS

Depending on the land usage of the city area underlying
each hotspot, some daily activity behaviors may not emerge.
As an example, the Entertainment-Day behavior is mainly
caused by the presence of clubs or other entertainment-
oriented business that may attract the nightlife. Thus, the
hotspots underlying a mixed usage zones are the most promis-
ing ones for the analysis, since our aim is to characterize
all the aspects of the city life. According to official land
use (publicy available at [13]), each city block can be clas-
sified into the following categories: commercial, residential,
industrial, transportation space, institutional, open/recreational
space, parking or vacant. By considering the distribution of
these categories in each hotspot it can be evaluated how
diversified the usage of that area is, and therefore the related
amount of the mobility dynamics. Specifically (i) Hotspot A
is primarily residential and secondly institutional; (ii) Hotspot
B is mainly residential and commercial; (iii) Hotspot C is
principally open space and residential; (iv) Hotspot D and E
are characterized by an equal distribution of almost all usage
classes; (v) Hotspot F is mainly commercial and residential,
with some institutional blocks; (vi) finally, Hotspot G presents
all usage categories, with a prevalence of the commercial
category. The higher the variety of the usage of a hotspot,
the better a candidate this hotspot is for our analysis: then
hotspots D and E are chosen. For these hotspots, and for
2015, Table I shows the percentage of correctly classified
patterns (among the normal and anomalous classes) obtained
with 5 different trials in the form mean ± 95% confidence.
The classification performance is also calculated by using
two well-known time series distance measures: the Dynamic
Time Warping [11], and the Fréchet distance [45]. Clearly,
the SRF measure outperforms both the DTW and the Fréchet
distances. In order to further test the assessment of anomalous
patterns, the activity time series annotated as anomaly have
been annotated by a triple according to their affinity with the
typical pattern of each behavioral class. As an example, the
triple W|E|L means that current time series is mostly similar to
Working-Day typical pattern and secondly to Entertainment-
Days one, whereas it shows only minor similarity with respect
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TABLE I
PERCENTAGE OF CORRECT CLASSIFICATION ACHIEVED BY ANALYZING

OF HOTSPOT D AND E DURING 2015, AND USING 3 SIMILARITY
MEASURES.

Similarity Measure Hotspot D Hotspot E

SRF 95.61 ± 0.003 94.24 ± 0.24

DTW 90.57 ± 0.134 91.80 ± 1.387

FRECHET 90.14 ± 0.537 90.52 ± 2.34

TABLE II
PERCENTAGE OF CORRECT CLASSIFICATION ACHIEVED BY ANALYZING

DATA GATHERED DURING 2013, 2014, AND 2015.

Year SRF DTW

2013 92.71 ± 0.321 90.57 ± 0.134

2014 96.65 ± 0.109 92.27 ± 0.106

2015 95.61 ± 0.003 91.28 ± 0.106

to Leisure-Days. With the aim for measuring the capability
of our similarity measure to generate a corresponding affinity
assessment, we compute the average of the similarity of each
time series annotated as an anomaly with respect to the most
representative days of each behavioral class. Sorting them by
similarity, we obtain the triple. The Mean Assessment Error is
computed as the number of non-matching sort constraints for
each pair of triples, averaged over all the set of the anomalies.
As an example, the triples W|L|E and W|E|L have just one
non-matching sort constraint, which is L<E, whereas both
triples state that W<E and W<L.

A comparison is provided by repeating this procedure using
the Dynamic Time Warping [11] distance. Resulting Mean
Assessment Error are equal to 1.135 (SRF-based similarity
measure) and 1.115 (DTW distance). According to these
results both methods are suitable for pattern analysis, thus we
provide the comparison of their performance in anomalous
pattern detection.

Specifically, in order to compare the classification perfor-
mances of our approach with respect to DTW, we collect
the percentage of correctly classified days among 5 trials.
During each trial, the DE generates a new set of Anomaly
Index thresholds. If the Anomaly Index of an activity level
time series exceeds the threshold, the corresponding day is
considered anomalous. Obtained results are presented in the
form mean ± 95% confidence interval in Table II.

Based on obtained results, our approach provides an ef-
fective detection of major anomalies. But, handling minor
or potential anomalies could be more difficult. In order to
evaluate the effectiveness of our measure while handling this
kind of anomalies, we select a set of events including official
holidays and days affected by special events with documented
effect on the road in (or in close proximity of the) hotspot D.
Such events could be days characterized by adverse weather
condition (e.g., Juno storm), street closure (e.g., due to the
Gay Pride parade) and so on. This set is provided for each
year under analysis.

A set of ordinary days is also included. An effective
anomaly measure is supposed to exhibit high correlation
between its value and the set (events or ordinary days) which

Fig. 8. Scatter-plot generated by considering Events, Typical Days and their
corresponding Anomaly Index.

TABLE III
CORRELATION COEFFICIENT BETWEEN ANOMALY INDEX AND DAY

CHARACTERIZED BY EVENTS OCCURRING IN THE HOTSPOT. COMPARISON
BETWEEN SRF-BASED APPROACH AND DTW.

Year SRF DTW

2013 0.8963 0.7177

2014 0.9289 0.7236

2015 0.9210 0.6828

current day belongs to. In Fig. 8 the correlation obtained by
using our SRF-based measure is shown.

In order to compare obtained results in terms of correlation
between events and computed Anomaly Index, we provide
it by using SRF-based approach and DTW. In Table III we
present obtained correlation coefficient for each year under
analysis.

VI. CONCLUSION

A novel approach for anomaly discovery in the context of
taxi trip data have been proposed in this paper.

Our approach was able to identify city hotspots, characterize
the daily patterns of their activity over time and detect days
characterized by an anomaly. Our approach has been tested
on real world dataset containing all taxi trips occurred in
Manhattan during 2013, 2014 and 2015, for a total amount
of 74GB of data.

On the basis of the results of this work, several conclusion
have to be drawn.

First of all, we prove the suitability of our approach for
the analysis of ”big data”. This is due to the information
abstraction provided by our multilayer topology.

Moreover, it is worth recalling that our approach exploits the
information self-organization obtained by using the principle
of stigmergy and does not require the in-depth modeling
of the dynamics under investigation. This quality together
with the adaptation provided by the SP training process,
allows to specialize the detection on any occurred dynamics
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despite minor differences. Indeed, the performances of our
approach have not been affected by differences among the
typical activity patterns of each year. The source code of
our Stigmergic Perceptron has been publicly released on the
MATLAB Central File Exchange [46].

The performances of our approach is measured in terms of
percentage of correctly classified daily patterns among typical
and anomalous ones. Moreover, the effectiveness in handling
minor anomalies is measured by computing the correlation
between the Anomaly Index and the occurrence of urban
events (e.g., local parade or official holiday).

Obtained results have been compared with respect to the
one achieved by analyzing the activity time series with DTW.
In both cases, and in every year under analysis, our approach
outperforms DTW, achieving up to 96.65 percentage of cor-
rectly classified days and 0.9289 correlation coefficient.

Although mobility in Manhattan can be characterized by
many dynamics for each day, both typical and exceptional,
the stigmergy-based approach has proven to be a withstanding
method to enhance significant patterns in taxi trip data, letting
them emerge autonomously.

Finally yet importantly, our approach provides a continuous
measure (the Anomaly Index) of the divergence with respect
to typical activity patterns, which can be used by policy
makers to evaluate the effect and the resilience of proposed
policies or change them dynamically according to provided
measures. Our approach can be potentially applied to any
sustainable transportation indicator, to distinguish different
spatiotemporal patterns occurring over time. For each indicator
and for each basic pattern, a subset of labelled data is required
to enable a proper calibration and interpretation of what can
be discovered. This study focuses on a complete description,
experimentation and discussion of our approach via a specific
indicator extracted from a real world taxi trips data set. A more
extensive experimentation on multiple indicators is clearly
possible but it is out of the scope of this work. Thus, one of the
most promising improvements for this study consists of cross-
checking results obtained by exploiting different data sources
and indicators. As an example, by incorporating pollution data
or car crash data into the analysis, policy makers could gain
insight about the mutual interaction of this phenomena, which
is a fundamental knowledge for producing effective policies.
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