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A novel approach to fuzzy clustering based on a dissimilarity relation
extracted from data using a TS system
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Abstract

Clustering refers to the process of unsupervised partitioning of a data set based on a dissimilarity measure, which determines the
cluster shape. Considering that cluster shapes may change from one cluster to another, it would be of the utmost importance to extract the
dissimilarity measure directly from the data by means of a data model. On the other hand, a model construction requires some kind of
supervision of the data structure, which is exactly what we look for during clustering. So, the lower the supervision degree used to build
the data model, the more it makes sense to resort to a data model for clustering purposes. Conscious of this, we propose to exploit very
few pairs of patterns with known dissimilarity to build a TS system which models the dissimilarity relation. Among other things, the rules
of the TS system provide an intuitive description of the dissimilarity relation itself. Then we use the TS system to build a dissimilarity
matrix which is fed as input to an unsupervised fuzzy relational clustering algorithm, denoted any relation clustering algorithm (ARCA),
which partitions the data set based on the proximity of the vectors containing the dissimilarity values between each pattern and all the
other patterns in the data set. We show that combining the TS system and the ARCA algorithm allows us to achieve high classification
performance on a synthetic data set and on two real data sets. Further, we discuss how the rules of the TS system represent a sort of
linguistic description of the dissimilarity relation.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of cluster analysis is to organize a collection of
patterns (usually represented as vectors of measurements,
or points in a multidimensional space) into homogeneous
groups (called clusters) based on pattern similarity [1,2].
Typically, similarity (more often dissimilarity) is expressed
in terms of some distance function, such as the Euclidean
distance or the Mahalanobis distance. The choice of the
(dis)similarity measure induces the cluster shape and there-
fore determines the success of a clustering algorithm on
the specific application domain. For instance, the Euclidean
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and Mahalanobis distances lead clustering algorithms to
determine hyperspherical-shaped or hyperellipsoidal-shaped
clusters, respectively. However, when applying clustering to
data with irregular distribution, as it is often the case for im-
age segmentation and pattern recognition [3], distance func-
tions cannot adequately model dissimilarity [4–7]. Consider,
for example, the dissimilarity between pixels of an image
consisting of elements with irregular-shaped contours.

To solve this problem, some approaches can be found in
the literature. For example, in Ref. [8], the dissimilarity be-
tween two points is defined as a function of their context,
i.e., the set of points in the neighborhood of each such point.
In Ref. [9], pre-defined concepts are used to define the “con-
ceptual similarity” between points. In Ref. [10], Yang and
Wu propose to adopt a total similarity related to the approx-
imate density shape estimation as objective function of their
clustering method.
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In appearance-based vision, Jacobs et al. observe that clas-
sification systems, which can model human performance or
use robust image matching methods, often exploit similar-
ity judgement that is non-metric [11]. They show that exist-
ing classification methods can meet considerable difficulties
when applied to non-metric similarity functions. They note,
however, that, if an accurate choice of class representatives
is performed, exemplar-based methods can be applied nat-
urally and successfully. Thus, they propose a new approach
which aims to retain both atypical (i.e., dissimilar from most
other patterns belonging to the class) and boundary (i.e., be-
longing to the boundaries between classes) patterns. Further,
they suggest to adopt the vector correlation between the dis-
tances from each image to other previously seen images as
a good measure of how well an image can represent another
in non-metric spaces.

In Ref. [12], Makrogiannis et al. introduce a region dis-
similarity relation that combines feature-space and spatial
information for color image segmentation. First, regions are
produced from the original images by means of the Wa-
tershed transform. Each region is characterized by a vector
of mean pixels intensities in the utilized color space. Re-
gions are therefore clustered by using the mountain cluster-
ing method and the fuzzy C-means in sequence. Clusters can
be regarded as robust and statistically reliable descriptors
of local color properties. Then, each region is represented
by the vector of membership values of the region to each
cluster. This representation implicitly transforms the feature
space to the space of membership values. In this space, the
dissimilarity between two regions is computed, for instance,
as the cosine between the two vectors which represent the
regions. This space transformation allows introducing global
information in the dissimilarity measure which is used for
generating the minimal spanning tree and producing the
final segmentation.

A different approach proposes to extract the dissimilar-
ity relation directly from the data by guiding the extraction
process itself with as little supervision as possible [13]. Fol-
lowing this approach, Hertz et al. suggest to learn distance
functions by using a subset of labelled data [14]. In par-
ticular, they train binary classifiers with margins, defined
over the product space of pairs of images, to discriminate
between pairs belonging to the same class and pairs belong-
ing to different classes. The signed margin is used as a dis-
tance function. Both support vector machines and boosting
algorithms are used as product space classifiers. Using some
benchmark databases from the UCI repository, the authors
show that their approach significantly outperforms existing
metric learning methods based on learning the Mahalanobis
distance. Similarly, in previous papers [15,16], we extracted
the dissimilarity relation directly from a few pairs of data
with known dissimilarity rather than from pairs of data with
known labels. Thus, our approach is more general than that
adopted in Ref. [14]. More precisely, we adopted a multi-
layer perceptron (MLP). Once trained, the MLP can asso-
ciate a dissimilarity value with each pair of patterns in the

data set. Then, we used the dissimilarity measure generated
by the MLP to guide an unsupervised fuzzy relational clus-
tering algorithm. Though the results we obtained are better
than those achieved by some widely used clustering algo-
rithms based on spatial dissimilarity, two weak points can
still be pointed out. First of all, the dissimilarity relation gen-
erated by the MLP is not interpretable in linguistic terms;
then, owing to the generalization performed starting from
a restricted number of known relationship values, the dis-
similarity relation D produced by the MLP is, in general,
neither irreflexive nor symmetric. Unfortunately, the most
popular fuzzy relational clustering algorithms [17,18], any
of which can be used to work on D, assume that D is at least
a positive, irreflexive and symmetric square binary relation.
This means that these algorithms can be applied to D, as we
showed in Refs. [15,16], but their convergence to a reason-
able partition is not guaranteed. In this paper we propose
a solution to both the above problems. Indeed, we substi-
tute the MLP network with a Takagi–Sugeno (TS) system
[19], whose fuzzy rules are identified from a few pairs of
patterns with known dissimilarity by using the method pro-
posed in Ref. [20]. At the end of the identification phase,
like the MLP, the TS system can associate a dissimilarity
degree with each pair of patterns in the data, but, unlike the
MLP, the TS system is capable of providing a sort of intu-
itive description of the dissimilarity relation.

Then, to make our approach independent of the charac-
teristics of the relation generated by the TS model, we use
the fuzzy relational clustering method, denoted any rela-
tion clustering algorithm (ARCA), recently proposed in Ref.
[21], which can be applied to any type of relation matrix,
with all guarantees of convergence. ARCA exploits the well-
known fuzzy C-means (FCM) algorithm [22] to partition the
data set based on the proximity of the vectors containing the
dissimilarity values between each pattern and all the other
patterns in the data set. We verified that ARCA produces
partitions similar to the ones generated by the other fuzzy
relational clustering algorithms, when these converge to a
sound partition. On the other hand, as ARCA is based on the
FCM algorithm, which has proved to be one of the most sta-
ble fuzzy clustering algorithms, ARCA is appreciably more
stable than the other fuzzy relational clustering algorithms.

The effectiveness of the combination TS model–ARCA is
shown using three examples of its application to a synthetic
data set and to two public real data sets, respectively. We
describe how our approach achieves very good clustering
performance using a limited number of training samples.
Further, we show how the TS model can provide an intuitive
linguistic description of the dissimilarity relation.

We wish to point out that the method proposed in this
paper is intended for use in all cases in which the dissim-
ilarity relation can be learnt from a reasonably small por-
tion of samples, which form the training set, using a fuzzy
TS model. The capability of providing linguistic descrip-
tions of the dissimilarity relation combined with the conver-
gence guarantee of the relational clustering algorithm is the
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novelty of the method. The method works, in principle, with
any kind of data set. In fact, as it unfolds the entire data onto
as many dimensions as the number of data points in order
to transform the relational clustering to object-based cluster-
ing, it is more appropriate for moderate-size data sets, typi-
cally containing up to a few hundreds of patterns. Actually,
as it is well known, adopting distance functions more suit-
able for high-dimensional spaces in place of the Euclidean
distance used by ARCA would allow us to alleviate the curse
of dimensionality problem. We did not adopt this solution in
the examples simply because it was not strictly necessary.
As a final remark, we observe that, as the dimensionality of
the data set increases, the interpretability of the set of fuzzy
rules becomes less evident.

2. The TS approach to dissimilarity modelling

TS systems are a powerful fuzzy modelling technique.
A TS system consists of a set of fuzzy rules [19]: the an-
tecedent of each rule determines a region of the input space
by means of a conjunction of fuzzy clauses that contain the
input variables; the consequent is a mathematical function
which approximates the behavior of the system to be identi-
fied in the region fixed by the antecedent. The generation of
a TS model requires the following two steps: the structure
identification and the parameter identification. The structure
identification determines the number of rules and the input
variables. The parameter identification estimates the param-
eters which define the membership functions of the fuzzy
sets in the rule antecedents and the parameters which iden-
tify the consequent functions. The number of rules is gen-
erally determined based on a clustering algorithm, so that
the number of rules is equal to the number of clusters which
compose the partition assessed to be the best with respect
to an appropriate validity index.

Let Q = [x1, . . . , xM ] be the data set. The rules of the
TS system used to model the dissimilarity relation have the
following form:

ri : If X1,1 is Ai,1,1 and . . . X1,F is Ai,1,F and

X2,1 is Ai,2,1 and . . . X2,F is Ai,2,F

then di = aT
i,1X1 + aT

i,2X2 + bi, i = 1 . . . C,

where Xe = [Xe,1, . . . , Xe,F ], with e = 1, 2, are the two
input variables of F components which represent the
pair of patterns whose dissimilarity has to be evaluated,
Ai,e,1, . . . , Ai,e,F are fuzzy sets defined on the domain of
Xe,1, . . . , Xe,F , respectively, aT

i,e = [ai,e,1, . . . , ai,e,F ], with
ai,e,f ∈ R, and bi ∈ R. The model output d, which rep-
resents the dissimilarity between the two input patterns, is
computed by aggregating the conclusions inferred from the
individual rules as follows:

d =
∑C

i=1 �idi∑C
i=1 �i

, (1)

where �i = ∏F
f =1 Ai,1,f (xj,f )

∏F
f =1 Ai,2,f (xk,f ) is the de-

gree of activation of the ith rule, when the pair (xj , xk) is
fed as input to the rule.

The number C of rules, the fuzzy sets Ai,e,f and the
consequent functions of the rules are extracted from the data
using a version of the method proposed in Ref. [20]. Let
T = {z1, . . . , zN

} be the set of known data, where z
h

=
[xi, xj , di,j ] ∈ R2F+1, with di,j the known dissimilarity
between xi and xj . First, the FCM algorithm is applied to
T to determine a partition U of the input/output space [22].
The optimal number of clusters is computed by executing
FCM with increasing values of the number C of clusters
for values of the fuzzification constant m in {1.4, 1.6, 1.8,
2.0} and assessing the goodness of each resulting partition
using the Xie–Beni index [23]. We plot the Xie–Beni index
versus C and choose, as optimal number of clusters, the value
of C corresponding to the first distinctive local minimum.
Fuzzy sets Ai,e,f are obtained by projecting the rows of
the partition matrix U onto the f th component of the input
variable Xe and approximating the projections by triangular
membership functions defined as follows:

Ai,e,f (Xe,f ; li,e,f , mi,e,f , ri,e,f )

= max

(
0, min

(
Xe,f −li,e,f

mi,e,f −li,e,f
,

ri,e,f −Xe,f

ri,e,f −mi,e,f

))
(2.a)

with li,e,f < mi,e,f < ri,e,f real numbers on the domain of
definition of Xe,f . In the cases of li,e,f = mi,e,f < ri,e,f ,
li,e,f < mi,e,f = ri,e,f and li,e,f = mi,e,f = ri,e,f , formula
(2.a) is not applicable and is replaced by the following three
formulas (2.b)–(2.d), respectively:

Ai,e,f (Xe,f ; li,e,f , mi,e,f , ri,e,f )

=
⎧⎨
⎩

ri,e,f − Xe,f

ri,e,f − mi,e,f

if mi,e,f �Xe,f < ri,e,f

0 otherwise,

if li,e,f = mi,e,f < ri,e,f , (2.b)

Ai,e,f (Xe,f ; li,e,f , mi,e,f , ri,e,f )

=
⎧⎨
⎩

Xe,f − li,e,f

mi,e,f − li,e,f
if li,e,f < Xe,f �mi,e,f

0 otherwise,

if li,e,f < mi,e,f = ri,e,f , (2.c)

Ai,e,f (Xe,f ; li,e,f , mi,e,f , ri,e,f )

=
{1 if Xe,f = li,e,f = mi,e,f = ri,e,f

0 otherwise,

if li,e,f = mi,e,f = ri,e,f . (2.d)

We computed the parameter mi,e,f , which corresponds to
the abscissa of the vertex of the triangle, as the weighted
average of the Xe,f components of the training patterns, the
weights being the corresponding membership values. Pa-
rameters li,e,f and ri,e,f were obtained as intersection of
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Fig. 1. The chromosome structure.

the Xe,f axis with the lines obtained as linear regression of
the membership values of the training patterns, respectively,
on the left and the right sides of mi,e,f . Obviously, if li,e,f
and ri,e,f are beyond the extremes of the definition domain
of variable Xe,f , the sides of the triangles are truncated in
correspondence to the extremes. The use of triangular func-
tions allows easy interpretation of the fuzzy sets in linguistic
terms. This characteristic will be useful to associate a mean-
ing with the rules, as explained in Section 4. We note that
formula (2.d) is used when a cluster is composed of a unique
point (singleton): this case is however extremely improba-
ble. Once the antecedent membership functions have been
fixed, the consequent parameters [ai,1, ai,2, bi], i=1=. . . C,
of each individual rule i are obtained as a local least squares
estimate.

The strategy used so far to build the TS model is aimed
at generating a rule base characterized by a number of inter-
esting properties, such as moderate number of rules, mem-
bership functions distinguishable from each other, and space
coverage, rather than at minimizing the model error. To im-
prove possible poor performance of the system, we apply a
genetic algorithm (GA) to tune simultaneously the parame-
ters in the antecedent and consequent parts of each rule in a
global optimization. To preserve the good properties of the
fuzzy model, we impose that no gap exists in the partition
of each input variable. Further, to preserve distinguishabil-
ity we allow the parameters that define the fuzzy sets to
vary within a range around their initial values. Each chromo-
some represents the entire fuzzy system, rule by rule, with
the antecedent and consequent parts (see Fig. 1). Each rule
antecedent consists of a sequence of 2 · F triplets (l, m, r)
of real numbers representing triangular membership func-
tions, whereas each rule consequent contains 2 · F + 1 real
numbers corresponding to the consequent parameters. The
fitness value is the inverse of the mean square error (MSE)
between the predicted output and the desired output over the
training set.

We start with an initial population composed of 70
chromosomes generated as follows: the first chromosome
codifies the system generated by the FCM, the others are
obtained by perturbing the first chromosome randomly
within the ranges fixed to maintain distinguishability. At

each generation, the arithmetic crossover and the uniform
mutation operators are applied with probabilities 0.8 and
0.6, respectively. Chromosomes to be mated are chosen
by using the well-known roulette wheel selection method.
At each generation, the offspring are checked against the
aforementioned space coverage criterion. To speed up the
convergence of the algorithm without significantly increas-
ing the risk of premature convergence to local minima, we
adopt the following acceptance mechanism: 40% of the new
population is composed of offspring, whereas 60% consists
of the best chromosomes of the previous population. When
the average of the fitness values of all the individuals in the
population is greater than 99.9% of the fitness value of the
best individual or a prefixed number of iterations has been
executed (6000 in the experiments), the GA is considered
to have converged.

Once the TS model has been generated and optimized, we
compute the dissimilarity value between each possible pair
(xi, xj ) of patterns in the data set Q. Such dissimilarity val-
ues are provided as an M × M relation matrix D = [di,j ].
The value di,j represents the extent to which xi is dissimi-
lar to xj . Thus, the issue of partitioning patterns described
through a set of meaningful features is transformed into the
issue of partitioning patterns described through the values
of their reciprocal relations. This issue is tackled by rela-
tional clustering in the literature. As in real applications
clusters are generally overlapped and their boundaries are
fuzzy rather than crisp, we consider fuzzy relational cluster-
ing algorithms.

3. The relational clustering algorithm

The most popular examples of fuzzy relational cluster-
ing are the Roubens’ fuzzy non-metric model (FNM) [24],
the Windham’s assignment prototype (AP) model [25], the
Hathaway et al.’s relational fuzzy C-means (RFCM) [26],
the Hathaway and Bezdek’s non-Euclidean relational fuzzy
C-means (NERFCM) [27], the Kaufman and Rousseeuw’s
fuzzy analysis (FANNY) [28], the Krishnapuram et al.’s
fuzzy C-medoids (FCMdd) [18], and Davé and Sen’s fuzzy
relational data clustering (FRC) [29]. All these algorithms
assume (at least) that D = [di,j ] is a positive, irreflexive
and symmetric fuzzy square binary dissimilarity relation,
i.e., ∀i, j ∈ [1 . . . M], di,j �0, di,i = 0 and di,j = dj,i .
Unfortunately, the relation D produced by the TS model
may be neither irreflexive nor symmetric, thus making the
existing fuzzy relational clustering algorithms theoretically
not applicable to this relation. Actually, as shown in Ref.
[16], these algorithms can be applied, but their convergence
to a reasonable partition is not guaranteed (see, for instance,
Ref. [21]).

To make our approach independent of the relation gener-
ated by the TS model, we use the ARCA fuzzy relational
clustering method, recently proposed by Corsini et al. [21].
This method is particularly suitable for our problem because
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it can be applied to any type of relation matrix. ARCA arises
from the following observation: in relational clustering, each
pattern xi is defined by the values of the relations between
xi and all patterns in the data set. If the data set is com-
posed of M patterns, each pattern xi can be represented as a
vector x̂i = [di,1, . . . , di,M ] in RM , where di,j is the extent
to which xi is related to xj . Since a relational clustering al-
gorithm should group patterns that are “closely related” to
each other, and “not so closely” related to patterns in other
clusters, as indicated by their relative relational degrees [17],
we can obtain clusters by grouping patterns based on their
closeness in the space RM .

Let B1, . . . , BC be a family of fuzzy clusters on Q. Then,
the objective function minimized by ARCA is:

Jm(U, V ) =
C∑

i=1

M∑
k=1

um
i,kd

2(x̂k, v̂i ) (3)

under the constraints ui,k ∈ [0, 1], ∀i, k, and
∑C

i=1 ui,k

=1, ∀k, where m is the fuzzification constant, U =[ui,k] is a
real C×M partition matrix, V is the set of cluster prototypes,
ui,k is the membership value of xk to cluster Bi , d(x̂k, v̂i )

denotes the Euclidean distance between the representations
x̂k and v̂i in RM of the generic pattern xk and the prototype
vi of cluster Bi . In our case, a prototype is a (possibly vir-
tual) pattern whose relationship with all patterns of the data
set is representative of the mutual relationships of a group of
similar patterns. The function proposed in Eq. (3) coincides
with the objective function of the classical FCM algorithm
[22], when the patterns to be clustered are defined in the
space RM , and therefore it can be minimized by using the
same formulas as in FCM. Thus, representing the M × M

relation matrix as M vectors defined in the feature spaceRM

allows transforming a relational clustering problem into an
object clustering problem, which can be solved using the
FCM algorithm. ARCA was tested on some public data sets,
showing that the partitions obtained by ARCA are compa-
rable to the ones generated, when applicable, by the most
stable relational algorithms, namely RFCM and NERFCM
[21]. Further, ARCA requires no particular constraint on the
dissimilarity relation matrix, thus allowing its application to
the dissimilarity relation generated by the TS fuzzy system.

In the experiments, we used m=2 and �=0.001, where �
is the maximum difference between corresponding member-
ship values in two subsequent iterations. Moreover, we im-
plemented the ARCA algorithm in an efficient way in terms
of both memory requirement and computation time, thanks
to the use of the technique described in Ref. [30] to speed
up the execution of FCM, which is part of ARCA.

4. Experimental results

We tested our approach on the synthetic data set shown
in Fig. 2 and on two real data sets, namely the Iris and the
Wisconsin Breast Cancer (WBC) data sets. For each data set,

Fig. 2. The synthetic data set.

we carried out five experiments. We randomly extracted a
pool of patterns (called training pool) from the data set. This
pool was composed of 5%, 10%, 15%, 20% and 25% of the
data set, respectively, in the five experiments. We assume
to know the dissimilarity degrees between all the pairs that
can be built from patterns in the training pool. Then, we
build the training set by selecting a given number of pairs
of patterns from the training pool. More precisely, assume
that C is the number of clusters, which we expect to identify
in the data set. Then, for each pattern xi in the training
pool, we form q · C pairs (xi, xj ), with q ∈ [1 . . . 8], by
randomly selecting q · C patterns xj of the training pool as
follows: q patterns are chosen among those with dissimilarity
degree lower than 0.5 with xi , and the remaining q · (C −1)

patterns are chosen among those with dissimilarity degree
higher than 0.5. It is obvious that increasing values of q lead
to better classification performance, but also to increasing
execution times. In the data sets considered in this paper,
we observed that q = 5 provides a good trade-off between
classification accuracy and execution time. Let di,,j be the
degree of dissimilarity between xi and xj . We insert both
[xi, xj , di,j ] and [xj , xi, di,j ] into the training set.

4.1. Synthetic data set

Fig. 2 shows the synthetic bi-dimensional data set, which
consists of two classes. This data set was chosen because
it is not easily managed by clustering algorithms based on
spatial dissimilarity. For instance, both the Euclidean and
the Mahalanobis distances lead the FCM algorithm [22] and
the Gustaffson and Kessel’s algorithm [31] to partition this
data set with percentages of correctly partitioned points of
72.22% and 80.00%, respectively.1 We carried out the five

1 We refer to single seed-based algorithms, that is, algorithms which
use a single seed to represent a cluster. Actually, multiple seeds-based
algorithms can identify correctly the two classes, when the number of
seeds is adequate. Anyway, the choice of the number of seeds requires
previous estimation of point density and/or identification of cluster border
points, which are not very easy to perform [32].
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Fig. 3. The Xie–Beni index versus C.

experiments described above and, for each experiment, we
executed ten trials. For the sake of simplicity, in the exper-
iments, we used only 0 and 1 to express the dissimilarity
degree of two input points belonging to the same class or
to different classes, respectively. Please, note that we use
the knowledge about classes just to assign dissimilarity de-
grees to pairs of points in the training pool. First, for each
trial, we executed the FCM algorithm with values of the
number C of clusters from 2 to 15 and values of m rang-
ing in {1.4, 1.6, 1.8, 2.0}. Second, we plotted the Xie–Beni
index versus C and chose, as optimal number of clusters,
the value of C corresponding to the first distinctive local
minimum. Fig. 3 shows an example of this plot for a trial
with the training pool composed of 15% of the data. It can
be observed that there exists a distinctive global minimum
at C = 11.

Third, we built the antecedent of the TS model by pro-
jecting the rows of the partition matrix U corresponding to
the minimum of the Xie–Beni index onto the input variables
and approximating the projections by triangular membership
functions. Fourth, we computed the consequent parameters
of each rule as a local least squares estimate. Fifth, we ap-
plied the GA to optimize the TS model so as to reduce the
MSE between the known dissimilarity values and the output
of the TS model. Fig. 4 shows the MSE of the best chromo-
some of each generation versus the number of iterations for
the same trial as in Fig. 3. We observe that the MSE gets
stable around 4500 generations and reaches the termination
threshold after 5550 iterations.

To assess the generalization properties, for each trial and
each experiment we tested the TS model on all possible pairs
of points in the data set and measured the percentage of
the point pairs with dissimilarity degree lower than (higher
than) 0.5 for pairs of points belonging (not belonging) to the
same class. Table 1 shows the percentages of correct dis-
similarity values obtained. Here, the columns show, respec-
tively, the percentage of points composing the training pool,
the number of rules of the TS model (in the form (mean ±
standard deviation)), the percentage of correct dissimilarity

Fig. 4. Mean square error of the best chromosome on the training set.

values before and after the GA optimization. It can be ob-
served that the application of the GA sensibly improves the
percentage of correct dissimilarity values generated by the
TS model independently of the cardinality of the training
pool. Please, note that the percentage of total pairs of points
included in the training set is much lower than the percent-
age of total points in the training pool. Taking this into ac-
count, the 90.4% achieved by the TS model using a training
pool with 25% of the points is undoubtedly remarkable. Fi-
nally, we note that the number of rules is quite high, espe-
cially for lower percentages of points in the training pool.
This implies a high number of GA parameters which may
cause overfitting.

4.1.1. Solving overfitting
To highlight possible overfitting problems, at each itera-

tion we also computed the MSE between the real dissimi-
larity values and the dissimilarity values output by the TS
model on a validation set consisting of point pairs gener-
ated (in the same way as the training set) from 15% of the
points not included in the training pool. Fig. 5 shows the
MSE versus the number of iterations for the same trial as
in Fig. 4. Actually, we recognize the presence of overfitting
in correspondence with 1500–2000 generations. We experi-
enced that this problem occurs for training pools consisting
of up to 20% of the points. Thus, for these cases, we stopped
the execution of the GA after 2000 generations. To ver-
ify whether overfitting was due to the inappropriate choice
of the number of clusters determined by the Xie–Beni in-
dex, we performed a thorough experimental activity vary-
ing incrementally the number of clusters (starting from 2),
executing the GA and measuring the overall performance
of the TS model. We observed that the best results were
achieved adopting the number of rules fixed by the Xie–Beni
index.
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Table 1
Percentage of point pairs with correct dissimilarity values (synthetic data set)

Training pool (%) Number of rules Correct dissimilarity values Correct dissimilarity values
before GA (%) after GA (%)

5 10.5 ± 3.3 61.8 ± 6.7 69.6 ± 7.6
10 10.1 ± 3.2 66.3 ± 3.8 75.7 ± 5.2
15 11.7 ± 3.2 65.6 ± 6.8 82.6 ± 4.2
20 12.6 ± 2.9 67.8 ± 3.0 85.3 ± 3.9
25 14.2 ± 1.5 69.7 ± 2.8 90.4 ± 3.5

Fig. 5. Mean square error of the best chromosome on the validation set.

Table 2
Number of clusters in the five experiments

Training Number of Percentage of trials with number of
pool (%) clusters clusters equal to number of classes (%)

5 2.1 ± 0.3 90
10 2.0 ± 0.0 100
15 2.0 ± 0.0 100
20 2.0 ± 0.0 100
25 2.0 ± 0.0 100

4.1.2. Applying ARCA
Finally, we computed the dissimilarity relation and ap-

plied ARCA. We used �=0.001 and m=2. We executed the
fuzzy relational algorithm with C ranging from 2 to 5 and
chose the optimal number of clusters based on the Xie–Beni
index. Table 2 shows the number of clusters (in the form
(mean ± standard deviation)) in the five experiments. It can
be observed that the percentage of trials in which the number
of clusters is equal to the number of classes increases very
quickly (up to 100%) with the increase of the percentage of
points in the training pool.

Table 3 shows the percentage of correctly classified points
in the five experiments when C = 2. Here, the second col-
umn indicates the percentage of correctly classified points
and the third column the partition coefficient. As expected,
the percentage of correctly classified points increases with
the increase of points in the training pool. Just for small per-
centages of points in the training pool, the combination TS
system–ARCA is able to trace the boundaries of the classes
conveniently. The quality of the approximation improves

Table 3
Percentage of correctly classified points of the synthetic data set in the
five experiments

Training Correctly classified Partition
pool (%) points (%) coefficient

5 84.4 ± 6.5 0.84 ± 0.07
10 87.5 ± 5.4 0.89 ± 0.05
15 93.7 ± 3.5 0.90 ± 0.04
20 94.1 ± 2.9 0.92 ± 0.02
25 97.0 ± 1.8 0.94 ± 0.03

when the points of the training pool are a significant sample
of the overall data set. Table 3 shows that the class shape is
almost correctly identified just with 5% of the points of the
data set. Note that, as reported in Table 1, the TS system
is able to output only 69.6% of correct dissimilarity values,
when trained with training pools containing the same per-
centage of points. Finally, the high values of the partition
coefficient highlight that the partition determined by the re-
lational clustering algorithm is quite good.

4.1.3. Neural network approach vs TS model approach
To further assess the results described above, we ap-

plied ARCA to the dissimilarity relation extracted by
the three-layer feed-forward neural network proposed in
Refs. [15,16]. We performed the same experiments with
5%, 10%, 15%, 20% and 25% of the data set. We ob-
tained 87.12% ± 2.82%, 88.85 ± 2.8%, 93.80% ± 1.54%,
94.60 ± 1.52% and 97.34% ± 1.34%, respectively, of
correctly classified points. We can conclude that the two
methods to extract the dissimilarity relation achieve similar
performance. Unlike the neural network-based approach,
however, the TS model-based approach allows describing
the dissimilarity relation intuitively. To explain this state-
ment, Figs. 6 and 7 show the antecedent and the consequent
of the rules which compose the TS model for the same trial
as in Fig. 3 before and after the GA optimization, respec-
tively. Here, we have associated a label with each fuzzy set
based on the position of the fuzzy set in the universe of
definition.

Since each rule defines its fuzzy sets, which may be dif-
ferent from the other rules, we used the following method
to assign a meaningful linguistic label to each fuzzy set.
Firstly, we uniformly partition the universes of discourse into
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Ai,1,1 Ai,1,2 Ai,2,1 Ai,2,2

Fig. 6. Rules before GA (synthetic data set).

Ai,1,1 Ai,1,2 Ai,2,1 Ai,2,2

Fig. 7. Rules after GA (synthetic data set).

G fuzzy sets (denoted as reference terms in the following)
as shown in Fig. 8 and associate a meaningful label with
each fuzzy set. In the example, labels L, ML, M, MH, H,
denote, respectively, low, medium-low, medium, medium-
high, and high. Then, we compute the similarity between
each fuzzy set used in the rules and the reference terms using

1

0

µ 
(x

)

L ML M MH H

x MIN x MAX Xe,k

Fig. 8. Reference terms for a generic input variable Xe,k .

Table 4
The qualitative model before GA

Rule X1,1 X1,2 X2,1 X2,2 d̄i,j

r1 ML M M M 0.80
r2 M ML M MH 0.41
r3 M ML ML M 0.50
r4 MH MH ML M 0.81
r5 M H M H 0.00
r6 ML M M L 0.36
r7 ML M ML M 0.23
r8 M MH M ML 0.61
r9 M ML M ML 0.40
r10 M M ML M 0.91
r11 ML M MH H 0.53

the formula:

Si,l = |Ai,e,k ∩ Pl,e,k|
|Ai,e,k ∪ Pl,e,k| ,

where Ai,e,k and Pl,e,k are, respectively, a fuzzy set and a
reference term defined on the domain of input Xe,k [33]. Fi-
nally, if there exists a value of Si,l , with l = 1 . . . G, larger
than a fixed threshold �, the reference term Pl,e,k is associ-
ated with Ai,e,k (if there exist more Pl,e,k with Si,l > �, then
Ai,e,k is associated with the Pl,e,k corresponding to the high-
est Si,l); otherwise, Ai,e,k is added to the reference terms
after associating a meaningful label with it. Once the fuzzy
sets of all the rules have been examined, we again compute
the similarity between each fuzzy set and the current refer-
ence terms in order to associate the most appropriate label
with each fuzzy set. To generate the labels associated with
the fuzzy sets shown in Figs. 6 and 7, we have used a thresh-
old � = 0.5. Note that no further reference term has been
added.

To interpret the rules, we follow this procedure: for each
pattern z

k
=[xi, xj , di,j ] in the training set, we feed as input

the values of the coordinates of xi and xj to the TS model
and measure the activation degree of each rule. We aim to
discover whether there exists a relation between the activa-
tion of a rule and the values of dissimilarity. Tables 4 and
5 show, for each rule, the mean value d̄i,j of dissimilarity
di,j of the pairs (xi , xj ) of patterns of the training set which
activate this rule more than the other rules before and af-
ter applying the GA, respectively. This association between
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Table 5
The qualitative model after GA

Rule X1,1 X1,2 X2,1 X2,2 d̄i,j

r1 ML M M M 0.92
r2 M ML M H 0.73
r3 ML ML ML M 0.00
r4 MH MH ML M 1.00
r5 M H M H 0.00
r6 M MH M L 0.70
r7 ML M ML M 0.00
r8 M MH M M 0.73
r9 M ML M ML 0.32
r10 M M ML M 0.50
r11 ML M M H 0.38

rules and dissimilarity values helps us interpret the meaning
of the rules.

Before applying the GA, we can observe that each rule is
often activated both by pairs of points with high dissimilar-
ity and by pairs of points with low dissimilarity. Indeed, the
mean value of dissimilarity is quite close to 0.5 rather than
to 0 or 1. This means that the antecedents of the rules de-
termine regions of the plane which contain points belonging
both to the same class and to different classes. This obser-
vation confirms the results shown in Table 1: using 15% of
points in the training pool, we achieved only 65.6% of cor-
rect classification. To make the relations expressed by the
rules more evident, we introduce a visual representation of
the rules. To this aim, we assume that a rule is activated
more than the other rules when the membership of a pair
of points to the region determined by the antecedent of the
rule is higher than 0.5. The sub-region which contains these
pairs of points corresponds to the region determined by the
rectangles produced by �-cutting the membership functions
with � = 0.5. As an example, Fig. 9 shows these rectangles
for rule r3. For the sake of preciseness, here we use the real
fuzzy sets rather than their linguistic approximation through
the reference terms. The circled points of the data set rep-
resent the points belonging to the training pool. We can ob-
serve that the rectangles contain points which belong both to
the same class and to different classes. This result could be
expected as the mean value d̄i,j of dissimilarity associated
with this rule in Table 4 is 0.5.

After applying the GA, we note that rules are activated
by pairs of points with either high or low dissimilarity.
Indeed, the mean value of dissimilarity is close to 0 or
1. This means that the antecedents of the rules determine
regions of the plane which contain points belonging either
to the same class or to different classes. This observation
confirms the results shown in Table 1: using 15% of points
in the training pool, we achieved 82.6% of correct clas-
sification. Fig. 10 shows the graphical representation of
rule r3 after the optimization performed by the GA. We
can observe that the rectangles contain only points which
belong to the same class. This result agrees with the mean
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Fig. 9. Rule r3 before GA.

 
M

ML

M
L

ML

2,1X

2,
2

X

1,
2

X

1,1X

Fig. 10. Rule r3 after GA.
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Table 6
Percentage of pattern pairs with correct dissimilarity values (Iris data set)

Training Number of Correct dissimilarity Correct dissimilarity
pool (%) rules values before GA (%) values after GA (%)

5 8.9 ± 2.4 80.0 ± 4.1 80.5 ± 4.5
10 6.4 ± 1.6 82.7 ± 4.8 87.7 ± 3.1
15 4.8 ± 0.6 80.8 ± 3.0 90.2 ± 2.2
20 4.4 ± 0.8 78.5 ± 7.0 91.6 ± 2.0
25 4.7 ± 0.5 80.7 ± 4.7 91.6 ± 1.8

value d̄i,j = 0 of dissimilarity associated with this rule in
Table 5.

The analysis of the rules, which compose the TS system,
can therefore provide an intuitive explanation of the dissim-
ilarity relation, by highlighting interesting associations be-
tween the features which describe the patterns and the values
of dissimilarity. Actually, using the antecedents of Tables 4
and 5, the plane can be subdivided into regions character-
ized by different levels of dissimilarity. This characteristic
may be considered a considerable advantage with respect to
the neural approach proposed in Ref. [16].

4.2. The Iris data set

The second example uses the real Iris data set, provided by
the University of California, Irvine (http://www.ics.uci.edu/
∼mlearn/MLSummary.html). Iris consists of 150 patterns
characterized by four numeric features which describe, re-
spectively, sepal length, sepal width, petal length and petal
width. Patterns are equally distributed in three classes of Iris
plants, namely Iris Setosa, Iris Versicolor and Iris Virginica.
Class Iris Setosa is linearly separable from the other two.
However, class Iris Versicolor and Iris Virginica are not sep-
arable from each other. We carried out the five experiments
described in Section 4.1. Tables 6–8 show the percentage of
pattern pairs with correct dissimilarity values, the number
of clusters determined by the Xie–Beni index, and the per-
centage of correctly classified points of the Iris data set in
the five experiments, respectively. We observe that the per-
centage of correct dissimilarity values (after GA) is higher
than 90% with just 15% of points in the training pool. Fur-
ther, in 100% of the trials the number of clusters is equal to
the number of classes when the training pool contains 20%
of the points. Finally, just with 5% of points in the training
pool, the combination TS system–ARCA is able to correctly
classify nearly 90% of the points.

Fig. 11 shows the antecedent and the consequent of the
rules which compose the TS model for one of the trials
performed in the experiments after the optimization process
performed by the GA (for the sake of brevity, we omit the
representation of the rules before applying the GA). The
labels are associated with each fuzzy set using the same
reference terms as in Fig. 8 and the same procedure described
in Section 4.1.

Table 7
Number of clusters in the five experiments (Iris data set)

Training Number of Percentage of trials with number of
pool (%) clusters clusters equal to number of classes (%)

5 2.5 ± 0.5 50
10 2.8 ± 0.6 60
15 3.3 ± 0.5 70
20 2.9 ± 0.3 100
25 3.0 ± 0.0 100

Table 8
Percentage of correctly classified points of the Iris data set in the five
experiments

Training Correctly classified Partition
pool (%) points (%) coefficient

5 89.8 ± 5.5 0.74 ± 0.08
10 92.5 ± 4.6 0.86 ± 0.04
15 94.4 ± 3.0 0.91 ± 0.04
20 95.2 ± 2.1 0.93 ± 0.04
25 95.8 ± 1.6 0.92 ± 0.03

Table 9 shows, for each rule, the mean value d̄i,j of dis-
similarity di,j of the pairs (xi, xj ) of patterns of the training
set which activate this rule more than the other rules after
applying the GA.

To allow the reader to verify whether the relations ex-
pressed by the rules in Table 9 correspond to reality,
Figs. 12a–d show the distribution of the patterns for each
feature. In the figures, the X and Y axes represent the
patterns (separated for classes) and the feature values, re-
spectively. For the reader’s convenience, on the left side
of the figures we show the reference terms which partition
the feature domain. As an example, let us consider rule r1.
Here, the reader can observe that the fuzzy sets defined on
variables X1 and X2 define clusters which contain patterns
belonging to Setosa, and Versicolor or Virginica irises, re-
spectively. Indeed, rule r1 is associated with a mean value
d̄i,j equal to 1.

4.3. The WBC data set

As third example, we used the WBC data set, also pro-
vided by the University of California. The WBC data set
consists of 699 patterns belonging to two classes: 458 pat-
terns are members of the “benign” class and the other 241
patterns are members of the “malignant” class. Each pattern
is described by nine features: clump thickness, uniformity of
cell size, uniformity of cell shape, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal nu-
cleoli and mitoses. Since 16 patterns have a missing value,
we decided to use only 683 patterns in our experiments. We
performed the five experiments described in Section 4.1.

Tables 10–12 show the percentage of pattern pairs
with correct dissimilarity values, the number of clusters
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Ai,2,4Ai,2,3Ai,2,2Ai,2,1Ai,1,4Ai,1,3Ai,1,2Ai,1,1

Fig. 11. Rules after GA (Iris data set).

Table 9
The qualitative model after GA

Rule X1,1 X1,2 X1,3 X1,4 X2,1 X2,2 X2,3 X2,4 d̄i,j

r1 ML M L ML M ML MH MH 1.00
r2 M ML M M MH M MH MH 1.00
r3 MH M H MH M ML M M 1.00
r4 MH M H MH MH M MH MH 0.16
r5 M M MH M ML MH ML ML 1.00
r6 M ML M ML ML ML M M 0.22
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Fig. 12. Distribution of the patterns for each feature (Iris data set).
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Table 10
Percentage of pattern pairs with correct dissimilarity values (WBC data
set)

Training Number of Correct dissimilarity Correct dissimilarity
pool (%) rules values before GA (%) values after GA (%)

5 5.3 ± 0.6 83.0 ± 7.8 86.8 ± 4.8
10 4.0 ± 0.0 85.5 ± 8.0 91.4 ± 0.8
15 3.7 ± 0.6 87.3 ± 3.0 93.2 ± 1.0
20 3.3 ± 0.6 83.0 ± 2.3 92.3 ± 0.4
25 3.7 ± 0.6 84.2 ± 5.3 92.8 ± 0.6

Table 11
Number of clusters in the five experiments (WBC data set)

Training Number of Percentage of trials with number of
pool (%) clusters clusters equal to number of classes (%)

5 2.0 ± 0.0 100
10 2.0 ± 0.0 100
15 2.0 ± 0.0 100
20 2.0 ± 0.0 100
25 2.0 ± 0.0 100

Table 12
Percentage of correctly classified points of the WBC data set in the five
experiments

Training pool (%) Correctly classified points (%) Partition coefficient

5 95.9 ± 0.5 0.94 ± 0.03
10 96.1 ± 0.3 0.97 ± 0.00
15 96.8 ± 0.7 0.96 ± 0.00
20 96.8 ± 0.3 0.95 ± 0.01
25 97.1 ± 0.1 0.96 ± 0.01

determined by the Xie–Beni index, and the percentage of
correctly classified points of the WBC data set in the five
experiments, respectively. We observe that the percentage
of correct dissimilarity values is higher than 90% with just
10% of points in the training pool. Further, the number of
clusters is always equal to the number of classes. Finally,
just with 5% of points in the training pool, the combination
TS system–ARCA is able to correctly classify about 96%
of the points. This result is very interesting when compared
with some results published in the recent literature. In
Ref. [34], for instance, seven different classification methods

Ai,1,1 Ai,1,2 Ai,1,3 Ai,1,4 Ai,1,5 Ai,1,6 Ai,1,7 Ai,1,8 Ai,1,9 Ai,2,1 Ai,2,2 Ai,2,3 Ai,2,4 Ai,2,5 Ai,2,6 Ai,2,7 Ai,2,8 Ai,2,9

Fig. 13. Rules after GA (WBC data set).

are compared with each other using the WBC data set: half
of the 683 patterns are used as training set, and the remain-
ing patterns are used as test set. The best method achieves
95.14% classification rate on the test set. In our case, though
we exploit a lower number of patterns to generate the train-
ing set, we have 97.1% classification rate. This result proves
the effectiveness of our approach.

Fig. 13 shows the antecedent and the consequent of the
rules which compose the TS model for one of the trials
performed in the experiments after the optimization process
performed by the GA. The labels are associated with each
fuzzy set using the same reference terms as in Fig. 8 and
the same procedure described in Section 4.1.

Table 13 shows, for each rule, the mean value d̄i,j of
dissimilarity di,j of the pairs (xi , xj ) of patterns of the
training set which activate this rule more than the other
rules after applying the GA. Here, from the first rule we can
observe that if all the values of the features are low, then
the patterns are similar. On the other hand, we can derive
from the second rule that if the first input has low values
for all the features and the second input has high values
for all the features, then the patterns belong to different
classes. The third rule shows that if the first input has high
values for all the features and the second input has low
values, then the dissimilarity is quite “undecided”. To allow
the reader to verify whether the relations expressed by the
rules in Table 13 correspond to reality, Figs. 14a–i show
the distribution of the patterns for each feature. The reader
can observe, for instance, that the majority of patterns with
low values for each feature belong to the same class, the
benign class, as it was intuitively described by rule r1. Sim-
ilarly, the reader can observe that patterns with high values
for each feature and patterns with low values for each fea-
ture belong to different classes, as it was represented by
rule r2.

5. Conclusions

Most clustering algorithms partition a data set based on
a dissimilarity relation expressed in terms of some distance.
If the nature of the relation is conceptual rather than metric,
distance functions may fail to correctly model dissimilarity
and consequently cluster shapes. For this reason, in this pa-
per, we have proposed to extract the dissimilarity relation
directly from the data. To this aim, we exploit a TS fuzzy
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Table 13
The qualitative model after GA

Rule X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8 X1,9 X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8 X2,9 d̄i,j

r1 ML L L ML M ML ML L L ML L L ML M ML ML L L 0.00
r2 M L ML ML ML ML ML L L MH MH M M M MH MH MH ML 0.92
r3 MH M MH M MH MH MH MH M ML L L M ML ML ML ML ML 0.39
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Fig. 14. Distribution of the patterns for each feature (WBC data set).

system appropriately trained with a few known dissimilar-
ities between pattern pairs. The dissimilarity relation mod-
elled by the TS system is fed as input to a fuzzy relational
clustering algorithm recently proposed by the authors. The
algorithm partitions the data set based on the proximity of

the vectors containing the dissimilarity values between each
pattern and all the other patterns in the data set.

We have described the application of our method to an
artificial data set, which is not easily clustered by classical
fuzzy clustering algorithms, and to two well-known real data
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sets, namely Iris and WBC data sets. Further, we have shown
that just using a significantly low percentage of known dis-
similarities, our method is able to cluster the data sets almost
correctly. Finally, we have described how the TS model can
provide an intuitive linguistic description of the dissimilar-
ity relation.

Concluding, we wish to point out that in order to asses the
effectiveness of ARCA, we performed several experiments
by using the well-known relational clustering algorithms AP,
RFCM, NERFCM, FCMdd and FRC to cluster the dissim-
ilarity relations extracted by the TS model from the three
data sets described in Section 4. We observed that the be-
havior of these algorithms is similar to ARCA’s for the first
two data sets, where the number of objects is quite small.
Actually, both AP and FRC are very sensitive to the initial-
ization phase. For the third data set, though we used values
of m quite low (1.2–1.4), RFCM, NERFCM and FCMdd
tend to converge to partitions with membership of 1/C for
all the objects. AP and FRC show a stronger dependence on
the initialization.
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