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Clustering algorithms partition a collection of data into a certain number of clusters (groups, subsets, or 
categories). Though there is no universally agreed definition, most researchers describe a cluster by 
considering the internal homogeneity and the external separation (Xu and Wunsch, 2005). i.e., patterns in 
the same cluster should be similar to each other, while patterns in different clusters should not (Jain, Murty, 
and Flynn 1999; Su and Chou, 2001). Thus, the comct identification of clusters depends on the definition 
of similarity. Typically, similarity (more often dissimilarity) is expressed in terms of some distance 
function, such as the Euclidean distance or the Mahalanobis distance. The choice of the (dis)similarity 
measure induces the cluster shape and therefore determines the success of a clustering algorithm on the 
specific application domain. For instance, the Euclidean and Mahalanohis distances lead clustering 
algorithms to determine hyperspherical-shaped or hyperellipsoidal-shaped clusters, respectively. Typi- 
cally, when we apply a clustering algorithm, we do not know a priori the most natural and effective cluster 
shapes for the specific data-set. Each data-set is characterized by its own data distribution and therefore 
requires cluster shapes different from other data-sets. Nevertheless, we have to choose the dissimilarity 
measure before starting the clustering process. For instance, when we apply the classical fuzzy C-means 
(FCM) (Bezdek, 1981). which is one of the best known partitional fuzzy clustering algorithms, we decide 
a priori to use the Euclidean distance and therEfore to identify hyperspherical-shaped clusters. To 
overcome this problem, in the literature, several approaches have been proposed. For instance, den- 
sity-based clustering algorithms determine on-line the shape of clusters. In density-based clustering, 
clusters are regarded as regions in the data space in which the objects are dense. These regions may have 
an arbitrary shape and the points inside a region may be arbitrarily distributed. To determine if a region is 
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dense, we need to define the concept of neighborhood, based on a priori defined proximity (see, for 
instance, DBSCAN, Ester, Kriegel, Sander, and Xu, 1996, or OPTICS, Ankerst, Breunig, Kriegel, and 
Sander, 1999). Though proximity can be defined in terms of any dissimilarity measure, applications of 
density-based clustering algorithms proposed in the literature adopt a distance function to determine 
spatial proximity. Thus, again, though the shapes of clusters may be different from each other, they still 
depend on the a priori choice of a distance. 

When applying clustering to data with irregular distribution, as is often the case for image segmentation 
and pattern recognition (Jain and Flynn, 1993). distance functions cannot adequately model dissimilarity 
(Valentin, Abdi, O'Toole, and Cottrell, 1994; Kamgar-Parsi and Jain, 1999; Santini and Jain, 1999; Latecki 
and Lakamper, 2000). Consider, for example, the pixels of an image made up of distinguishable elements 
with irregular-shaped contours (for instance, bikes, cars, houses, trees). The dissimilarity between pixels 
should be small (large) when the pixels belong to the same image element (different image elements). 

To solve this problem, some approaches have been proposed in the literature. For example, Jarvis and 
Patrick (1973) defined the dissimilarity between two points as a function of their context, i.e., the set of 
points in the neighborhood of each such point. Michalski, Stepp, and Diday (1983) used predefined 
concepts to define the "conceptual similarity" between points. Yang and Wu (2004) proposed adopting a 
total similarity related to the approximate density shape estimation as objective function of their 
clustering method. Jacobs, Weinshall, and Gdalyahu (2000) observed that classification systems, which 
can model human performance or use robust image matching methods, often exploit similarity judgement 
that is non-metric. Makrogiannis, Economou, and Fotopoutos (2005) introduced a region dissimilarity 
relation that combines feature-space and spatial information for color image segmentation. 

Pedrycz (2005) suggested exploiting some auxiliary information (knowledge-based hints), which 
reflect some additional sources of domain knowledge, in order to guide the clustering process. He, first, 
proposed a general taxonomy of knowledge-based hints. Then, he discussed some clustering algorithms 
which partition the data-set guided by these hints. In particular, he considered a partially supervised 
version of the classical FCM algorithm (Pedrycz and Waletzky, 1997). which uses some labeled patterns 
as knowledge-based hints: these labeled patterns serve as reference elements in modeling the cluster 
shapes. Further, he discussed aproximity-based fuzzy clustering algorithm where knowledge-based hints 
are represented by proximity values between pairs of patterns (Pedrycz, Loia, and Senatore, 2004). 
Similarly, Lange, Law, Jain;ind Buhmann (2005) or Law, Topchy, and Jain (2005) proposed exploiting 
a priori knowledge about a desired model via two types of painvise constraints: must-link and must-not- 
link constraints. The two constraints correspond to the requirements that two objects should and should 
not be associated with the same label, respectively. 

A different approach proposed extracting the dissimilarity relation directly from the data by guiding the 
extraction process itself with as little supervision as possible (Pedrycz et al., 2001). Following this 
approach, Hertz, Bar-Hillel, and Weinshall (2004) suggested learning distance functions by using a subset 
of labeled data. In particular, they trained binary classifiers with margins, defined over the product space 
of pairs of images, to discriminate between pairs belonging to the same class and pairs belonging to 
different classes. The signed margin is used as a distance function. Both support vector machines and 
boosting algorithms are used as product space classifiers. Using some benchmark databases from the UCI 
repository, the authors showed that their approach significantly outperformed existing metric learning 
methods based on learning the Mahalanobis distance. 

Recently, some methods have been proposed to exploit pairwise dissimilarity information for learning 
distance functions (Xing, Ng, Jordan, and Russell, 2003). Tsang, Cheung, and Kwok (2005). for instance, 
proposed learning distance metric from a subset of painvise dissimilarity values by a kernelized version of 
the relevant component analysis method. Chang and Yeung (2005) formulated the metric learning 
problem as a kernel learning problem, which is efficiently solved by kernel matrix adaptation. 

Similarly, in this chapter, we will discuss how the dissimilarity relation can be extracted directly from a 
few pairs of data with known dissimilarity values rather than from pairs of data with known labels. We will 
discuss the application of two different techniques based on, respectively, neural networks and fuzzy 
systems. More precisely, we use a multilayer perceptron (MLP) with supervised learning (Haykin, 1999) 
and a Takagi-Sugeno (TS) fuzzy system (Takagi and Sugeno, 1985). The rules of the TS are identified by 
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using the method proposed by Setnes and Roubos (2000). Once the MLP has been trained and the TS has 
been identified, the two models can associate a dissimilarity value with each pair of patterns in the data- 
set. This relation, extracted from the data, can be exploited by a relational clustering algorithm to partition 
the data-set into a suitable number of clusters. 

In real applications, clusters are generally overlapped and theirboundaries are fuzzy rather than crisp. The 
identification of these clusters demands appropriate fuzzy relational clustering algorithms. To the best of our 
knowledge, fuzzy relational clustering algorithms proposed in the literature require dissimilarity relations 
which are symmetric and irreflexive (Bezdek, Keller, Krisnapuram, and Pal, 1999). On the other hand, the 
generalization performed by the MLP and by the TS may produce a relation that is neither symmetric nor 
irreflexive. For instance, a pattern not included in the training set may be judged slightly dissimilar to itself. 
Further, the dissimilarity value between pattern x, and pattern x, may be different from the dissimilarity 
value between pattern x, and pattern xi. Thus, though fuzzy relational algorithms may work correctly on the 
relation produced by the two models, sometimes they converge to solutions which are not sound. 

Actually, we observed that some of the best known fuzzy clustering algorithms, when applied to the 
dissimilarity relations extracted by the MLP and the TS, converge to a partition composed completely 
superimposed clusters, that is, each pattern in the data-set belongs to all clusters with the same member- 
ship grade. To overcome this unstable behavior, in a previous paper we proposed a new approach to fuzzy 
relational clustering: (Corsini, Lazzerini, and Marcelloni, 2005) starting from the definition of relational 
clustering algorithm, we transformed a relational clustering problem into an object clustering problem. 
This transformation allows us to apply any object clustering algorithm to partition sets of objects 
described by relational data. In the implementation based on the classical FCM algorithm and denoted 
ARCA (Corsini, Lazzerini, and Marcelloni, 2005), we verified that this approach produces partitions 
similar to the ones generated by the other fuzzy relational clustering algorithms, when these converge to a 
sound partition. On the other hand, as FCM has proved to be one of the most stable fuzzy clustering 
algorithms, ARCA is appreciably more stable than the otherfuzzy relational clustering algorithms. In this 
chapter we show the effectiveness of the combinations MLP-ARCA and TS-ARCA using a synthetic 
data-set and the Iris data-set, respectively. We describe how these combinations achieve very good 
clustering performance using a limited number of training samples. Further, we show bow the TS can 
provide an intuitive linguistic description of the dissimilarity relation. Finally, we discuss the perfor- 
mance obtained by the combination TS-ARCA on three real data-sets from the UCI repository. 

We wish to point out that the combination of supervised and unsupervised learning discussed in this 
chapter is intended fotsuse in all cases in which the dissimilarity relation can be learnt from a reasonably 
small portion of samples, which form the training set. The method works, in principle, with any kind of 
data-set. In fact, as it unfolds the entire dataonto as many dimensions as the number of data points in order 
to transform the relational clustering to object-based clustering, it is more appropriate for moderate-size 
data-sets, typically containing up to a few hundreds of patterns. 

13.2 DISSIMILARIN MODELING 

Our approach to fuzzy clustering is based on extracting the dissimilarity measure that drives theclustering 
strategy from a small set of known similarities. Thus, we have to generate a model that, given a pair (xi, x,) 
of input data, outputs the dissimilarity degree d, j  between xi and xj. The generation of this model is a 
typical identification problem, which bas been tackled by different techniques such as classical mathe- 
matical theory, support vector machines, neural networks, and fuzzy modeling. In this work, we discuss 
the application of two of these techniques: neural networks and fuzzy modeling. In particular, to model 
the dissimilarity relation, we used a multilayer perceptron (MLP) neural network with supervised 
learning and aTakagi-Sugeno (TS) fuzzy system. We assume that the patterns are described by numerical 
features (possibly, nonnumerical features are appropriately transformed into numerical ones) and the 
dissimilarity degrees1 between a few pairs of patterns are known. Let T = {z,, .  . . , zN) be the set of 

'~ctually, our method can deal with both similarity and dissimilarity relations. 
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known data, where z,, = [xi, xj, dij] E RZF+'. In the following two sections, we briefly describe the MLP 
and the TS used in our experiments. 

13.2.1 The Multilayer Perceptron 

We use a standard feedforward three-layer MLP neural network. Each neuron is equipped with a 
sigmoidal nonlinear function. The standard back-propagation algorithm with a dynamically decreasing 
learning rate is used as a learning scheme. Errors less than 0.001 are treated as zero. Initial weights are 
random values in the range 1-l/@, l /f iJ .  with m being the number of inputs to a neuron. As 
described by Corsini, Lazzerini, and Marcelloni (2006), to determine the best structure of the neural 
network with respect to the generalization capability, we performed a number of experiments with two- 
layer and three-layer MLP and with a different number of neurons for each hidden layer. For the data-sets 
discussed in this chapter, we observed that the best generalization properties are obtained by using an 
architecture with 20 and eight neurons for the first and second hidden layers, respectively. Further, we 
experimentally verified that this result is quite independent of the size of the training set, at least for the 
sizes used in the experiments. 

13.2.2 The Takagi-Sugeno System 

The rules of the TS have the following form: 

ri: If is Ai ,,,, and. . . X ~ , F  is Ai,I,F and X ~ , J  is Ai,2,1 and. . . XZ,F is Ai,P,F 

then di = aZ,Xl + aZ2Xz + bi, i = 1..R 

where R is the number of~rules, X, = [X,,I,. . . , Xeg], with e=l,  2, are the two input variables of F 
components that represent the pair of patterns whose dissimilarity has to be evaluated, . .,A. r,e,F are 
fuzzy sets defined on the domain of X,,,, . . ., X,+, respectively, aL = [ai.e,l, . . . , a;,e,~], with qef E %, 
and bi E R. The model output d, which represents the dissimilarity between two input patterns, is 
computed by aggregating the conclusions inferred from the individual rules as follows: 

- 

F F 
i=l 

where pi = n A;,l, (x,,~) n Ais, (xk, f )  is the degree of activation of the ith rule, when the pair (x,, xk) is 
f = l  

fed as inpuift%Ithe rule. 
ATS model is built through two steps, called the structure identijcation and the parameter idemijca- 

rion (BabuSka, 1996). The structure identification determines the number of rules and the variables 
involved in the rule antecedents. The parameter identification estimates the parameters that define, 
respectively, the membership functions of the fuzzy sets in the antecedents and the consequent functions. 
The number of rules is generally computed by exploiting a clustering algorithm (Angelov and Filev, 2004; 
Abonyi, BabuSka, and Szeifert, 2002). More precisely, the number of rules coincides with the number of 
clusters of the input-output space partition, which results to be the best with respect to an appropriate 
validity index. The parameter identification is obtained by first computing the fuzzy sets in the antecedent 
of the rules, and then estimating the parameters of the mathematical functions in the consequent (Angelov 
and Filev, 2004). One of the most used clustering algorithms to identify the structure of a TS is the 
classical FCM with Euclidean distance. As the FCM algorithm finds the fuzzy partition starting from a 
fixed number of clusters, and the number of clusters determines the number of rules that compose the 
fuzzy model, a criterion has to be adopted to determine the optimal number of clusters. The most common 
approach is to identify an interval of possible values of the number R of clusters and execute the FCM for 
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each value in the interval. Each execution is therefore assessed against a validity index. Several different 
validity indexes have been proposed in the literature (Bezdek, Keller, Krisnapuram, and Pal, 1999). The 
most used among these indexes are the Xie and Beni's index (XB, Xie, and Beni, 1991), the Fukuyama 
and Sugeno's index (Pal and Bezdek, 1995). the Gath and Geva's index (Gath and Geva, 1989), and the 
Rezaee, Lelieveldt, and Reiber's index (Rezaee, Lelieveldt, and Reiber, 1998). As is well known in the 
literature, there does not exist a validity index which is good for each data-set (Pal and Bezdek, 1995). In 
order to choose the most reliable index for the data-sets used in the experiments, we compared the 
aforementioned validity indexes against the TS accuracy obtained with the number of rules determined by 
the indexes. We observed that the XB index guarantees the best results. The Xie-Beni index is defined as 

where Vis the vector of cluster prototypes vi and Uis the fuzzy partition matrix whose generic element u:, 
represents the grade of membership of z, to cluster i. The numerator of the fraction measures the 
compactness of the clusters while the denominator measures the degree of separation of the cluster 
prototypes. For compact and well-separated clusters we expect small values of XB. We execute the FCM 
algorithm with increasing values of the number R of clusters for values of the fuzzification constant m in 
{ 1.4, 1.6, 1.8,2.0] and plot the Xie-Beni index versus R. We choose, as the optimal number of clusters, 
the value of R corresponding to the first distinctive local minimum. 

The combination of the FCM and the Xie-Beni index helps determining only the rules that describe 
important regions of the inputloutput space, thus leading to a moderate number of rules. Fuzzy sets Ai,e,f are 
obtained by projecting the rows of the partition matrix Uonto t h e m  component of the input variable X, and 
approximating the projections by triangular membership functions Ai , , f ( l i , . f ,mi , , f , r , , e f )  with 
lirf < mi,,f < riIe,f real numbers on the domain of definition of Xef We computed the parameter 
misf. which corresponds to the abscissa of the vertex of the triangle, as the weighted average of the Xef 
components of the training patterns, the weights being the corresponding membership values. Parameters 
lirf and ri,ef were obtained as intersection of the Xef axis with the lines obtained as linear regression of the 
memhership values of the training patterns, respectively, on the left and the right sides of mi,ef. Obviously, if 
lirf and r,,ef are beyond the extremes of the definition domain of variable Xef, the sides of the triangles are 
truncated in correspondence to the extremes. The use of triangular functions allows easy interpretation of the 
fuzzy sets in linguistic terms. Once tke antecedent membership functions have been fixed, the consequent 
parameters [a;,, , bi], i = 1..R, of each individual rule i are obtained as a local least squares estimate. 

The strategy used so far to build the TS is aimed at generating a rule base characterized by a number of 
interesting properties, such as a moderate number of rules, membership functions distinguishable from 
each other, and space coverage, rather than at minimizing themodel error. We experimentally verified that 
this TS could show apoor performance, in particular for training sets composed of a high number of pairs. 
Thus, we apply a genetic algorithm (GA) to tune simultaneously the parameters in the antecedent and 
consequent parts of eachrule in aglobal optimization. Topreserve the good properties of the fuzzy model, 
we impose that no gap exists in the partition of each input variable. Further, to preserve distinguishability 
we allow the parameters that define the fuzzy sets to vary within a range around their initial values. Each 
chromosome represents the entire fuzzy system, rule by rule, with the antecedent and consequent parts 
(see Figure 13.1). Each rule antecedent consists of a sequence of 2 . F triplets (I, m, r) of real numbers 
representing triangular membership functions, whereas each rule consequent contains 2 .  F + 1 real 
numbers corresponding to the consequent parameters. The fitness value is the inverse of the mean square 
error (MSE) between the predicted output and the desired output over the training set. 

We start with an initial population composed of 70 chromosomes generated as follows. The first 
chromosome codifies the system generated by the FCM, the others are obtained by perturbing the first 
chromosome randomly within the ranges fixed to maintain distinguishability. At each generation, the 
arithmetic crossover and the uniform mutation operators are applied with probabilities 0.8 and 0.6, 
respectively. Chromosomes to be mated are chosen by using the well-known roulette wheel selection 
method. At each generation, the offspring are cheeked against the aforementioned space coverage 
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1, TR , ... +-) 

antecedent; consequent; 
A A ,-- . , . 

Figure 13.1 The chromosome structure. 

criterion. To speed up the convergence of the algorithm without significantly increasing the risk of 
premature convergence to local minima, we adopt the following acceptance mechanism: 40 %of the new 
population is composed of offspring, whereas 60 % consists of the best chromosomes of the previous 
population. When the average of the fitness values of all the individuals in the population is greater than 
99.9 % of the fitness value of the best individual or a prefixed number of iterations has been executed 
(6000 in the experiments), the GA is considered to have converged. 

The fairly large size of the population and the mutation probability higher than usual have been chosen 
to counteract the effect of the strong exploitation of local linkages. Indeed, due to real coding (Wright, 
1991) and to constraints imposed on the offspring so as to maintain distinguishability, exploitation could 
lead to a premature convergence to sub-optimal solutions. The values of the GA parameters used in the 
experiments reduce this risk. To strengthen this consideration, we observed in the experiments that, 
varying the data-set, the values of the GA parameters do not need to be changed. 

13.2.3 MLP versus TS 

To compare the two approaches, we used the synthetic data-set shown in Figure 13.2 and the Iris data-set 
(UCI, 2006). The first data-set was chosen because clustering algorithms, which measure the dissimilarity 

€3 Cluster A Cluster B 

Figure 13.2 The synthetic data-set 
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between two points as the distance between the two points, cannot partition it correctly. Indeed, both the 
Euclidean and the Mahalanobis distances that induce, respectively, spherical and ellipsoidal cluster 
shapes lead, for instance, the FCM algorithm and the GK algorithm (Gustafson and Kessel, 1979) to 
partition the data-set incorrectly (Corsini, Lazzerini, and Marcelloni, 2006). 

For each data-set, we carried out five experiments. In these experiments, we aimed to assess how much 
the size of the training pool affected the performance of the MLP and the TS. For this purpose, we 
randomly extracted a pool of patterns (called the training pool) from the data-set. This pool was 
composed of 5 %, 10 %, 15 %, 20 %, and 25 % of the data-set, respectively, in the five experiments. 
Then, we built the training set by selecting a given number of pairs of patterns from the training pool. 
More precisely, assume that C is the number of clusters, which we expect to identify in the data-set. Then, 
for each pattern xi in the training pool, we formed q .  Cpairs (xi,x,), with q E [1..8], by randomly selecting 
q . C  patterns x, of the training pool as follows: q patterns were chosen among those with dissimilarity 
degree lower than 0.5 with xi, and the remaining q.(C-1) patterns were chosen among those with 
dissimilarity degree higher than 0.5. 

This choice hies to provide the same number of training samples for pairs of points belonging to 
different clusters as for pairs of points belonging to the same cluster. Obviously, since we do not know a 
priori the membership of each point to a class, this choice is only an approximation. However, we 
experimentally verified that it provides reliable results. It is obvious that increasing values of q leads to 
better classification performance, but also to increasing execution times. Obviously, we assumed the 
dissimilarity degrees between all the pairs that can be built frompattems in the training pool were known. 
This assumption, which is not actually necessary, was made to test the effects of q on the performance of 
the MLP and the TS. For the two data-sets, we observed that q = 5 provides a good trade off between 
classification accuracy and execution time. Let dij be the degree of dissimilarity between xi and xi. We 
inserted both [xi,xj,dij] and [x,, xi,dij] into the training set. 

We carried out the five experiments described above and, for each experiment, we executed 10 trials. 
For the sake of simplicity, in the experiments, we used only 0 and 1 to express the dissimilarity degree of 
two input points belonging to the same class or to different classes, respectively. Please note that we use 
the knowledge about classes just to assign dissimilarity degrees to pairs of points in the training pool. 

To assess the generalization properties, for each trial and each experiment we tested the two models on 
all possible pairs of points in the data-set and measured the percentage of the point pairs with dissimilarity 
degree lower than (higher than) 0.5 for pairs of points belonging (not belonging) to the same class. 

Tables 13.1 and 13.2 show the percentages of correct dissimilarity values obtained by applying the 
MLP to the synthetic and the Iris data sets. In the tables, the columns show, respectively, the percentage of 
points composing the training pool and the percentage (in the form (mean + standard deviation)) of 
pattern pairs with correct dissimilarity. 

Tables 13.3 and 13.4 show the percentages of correct dissimilarity values obtained by applying the TS 
system to the synthetic and the Iris data-sets. In the tables, the columns indicate, respectively, the 
percentage of points composing the training pool, the number of rules of the TS model (in the form 
(mean + standard deviation)) and the percentage of correct dissimilarity values before and after the GA 
optimization. It can be observed that the application of the GA sensibly improves the percentage of correct 
dissimilarity values generated by the TS model independently of the cardinality of the training pool. 

Table 13.1 Percentage of point pairs with correct dissimilarity values 
(MLP system on the synthetic data-set). 

Training pool Correct dissimilarity values 
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Table 13.2 Percentage of point pairs with correct dissimilarity values 
(MLP system on Iris data-set). 

Training pool Correct dissimilarity values 

As shown in the tables, the two approaches have similar performance. Both the MLP and the TS 
achieve about 90 % of correct dissimilarity values with 25 % of the points. We have to consider that the 
percentage of total pairs of points included in the training set is much lower than the percentage of total 
points in the training pool. For instance, for the synthetic data-set, a training pool composed of 25 % of the 
points corresponds to a training set composed of 2.78 % of the dissimilarity values. Taking this into 
account, the percentages achieved by the two approaches are undoubtedly remarkable. 

As regards the computational overhead, to achieve the results shown in Tables 13.1 and 13.2, the 
identification of the best performing architecture of the MLP has required several experiments. We used 
architectures with both two layers and three layers and with a different number of neurons for each hidden 
layer. For the two-layer architecture, we used 10,20,30,40,50,60, and 70 neurons in the hidden layer and for 
the thee-layer architecture, we used 12,16,20,24, and28 neurons inthe tirsthiddenlayerand4,6,8,10, and 
12 in the second hidden layer (Corsini, Lazzerini, and Marcelloni, 2006). For each architecture, we trained the 
MLP and evaluated the percentage of point pairs with correct dissimilarity. Similarly, to determine the 
st~ucture of the TS system, we executed the FCM algorithm with increasing values of the numberR of clusters 
for different values of the fuuification constant m and assessed the goodness of each resulting partition using 
the Xie-Beni index. Since the execution of the FCM is generally fa.&rthan the learning of an MLF', the 
determination of the TS structure is certainly quicker than the identification of the MLP architecture. 

Once the structure has been identified, the TS requires the execution of the GA for tuning the 
membership functions and the consequent parameters so as to minimize the mean square error. As is 
well known in the literature, GAS are generally computationally heavy. We verified, however, that the GA 
used in this work performs a good optimiqtion after a reasonable number of iterations. As an example, 
Figure 13.3 shows the percentage of corr&t dissimilarity values versus the number of generations in five 
trials with the Iris data-set and a training pool of 25 %. We can observe that a thousand generations allow 
the genetic algorithm to achieve a good approximation of the dissimilarity relation. If we consider that, as 
discussed in the next section, we can obtain good clustering results with 70-75 % of correct dissimilarity 
values, we can stop the genetic algorithm after a few hundreds of generations. This solution provides the 
further advantage of preventing overfitting problems, which may occur for small and unrepresentative 
training sets. The results shown in Tables 13.3 and 13.4 were obtained by stopping the GA after 2000 
generations. Thus, we can conclude that the generation of the TS requires less effort than thegeneration of 
the MLP. Indeed, the determination of the best MLP network requires iteration through a number of MLP 
architectures with a different number of hidden layers and of nodes for each layer. The different networks 

Table 13.3 Percentage of point pairs with correct dissimilarity values (TS system on the synthetic data-set). 

Correct dissimilarity Correct dissimilarity 
Training pool Number of rules values before GA values after GA 

5% 10.5 f 3.3 61.8% f 6.7% 69.6% f 7.6% 
10% 10.1 f 3.2 66.3% f 3.8% 75.7% f 5.2% 
15% 11.7 f3 .2  65.6% f 6.8% 82.6% f 4.2% 
20% 12.6 f 2.9 67.8% i 3.0% 85.3% i 3.9% 
25% 14.2 f 1.5 691% f 2.8% 90.4% f 3.5% 
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Table 13.4 Percentage of pattern pairs with correct dissimilarity values (TS system on Iris data-set) 
-- - - 

Correct dissimilarity Correct dissimilarity 
Training pool Number of Rules values before GA values after GA 

5% 8.9 f 2.4 80.0% i 4.1% 80.5% f 4.5% 
10% 6.4 f 1.6 82.7% i 4.8% 87.7% f 3.1% 
15% 4.8 i 0.6 80.8% f 3.0% 90.2% f 2.2% 
20% 4.4 f 0.8 78.5% f 7.0% 91.6% 3z 2.0% 
2590 4.7 f 0.5 80.7% f 4.7% 91.6% * 1.8% 

are compared against accuracy. Each architecture has to he trained and this operation generally requires a 
considerable amount of time, depending on the number of layers and neurons for each layer. On the 
contrary, the determination of the TS structure requires iteration of the execution of FCM with different 
values of the number of clusters. The execution of FCM is certainly faster than the training of the MLP 
network and also the number of executions of FCM needed is generally smaller than the number of MLP 
networks to be trained. On the other hand, the generation of the TS systems requires the execution of the 
GA, which is quite time consuming. We have to consider, however, that the GA is executed just one time. 

Finally, unlike the MLP, the TS allows describing the dissimilarity relation intuitively. Figure 13.4 shows 
the antecedent and the consequent of the rules that compose a TS model (after the optimization performed 
by GA) generated with the training pool composed of 15 % of the synthetic data-set. Here, we have 
associated a label with each fuzzy set based on the position of the fuzzy set in the universe of definition. 

Since each rule defines its fuzzy sets, which may be different from the other rules, we used the 
following method to assign a meaningful linguistic label to each fuzzy set. Arst, we uniformly partition 
the universes of discourse into G triangular fuzzy sets (denoted as reference t e r n  in the following) and 
associate a meaningful label with each fuzzy set. In the example, labels L, ML, M, MH, and H denote, 
respectively, low, medium-low, medium, medium-high, and high (see Figure 13.5). Then, we compute the 
similarity between each fuzzy set used in the rules and the reference terms using the formula 

Number of generations 

Figure 13.3 Percentage of correct dissimilarily values versus the number of generations 
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Antecedents Consequents 

Figure 13.4 Rules after GA (synthetic data-set). 

.5 

whereAiSef and Pirf are, respectively, a fuzzy set and a reference term defined on the domain of input Xef 
(Sugeno and Yasukawa, 1993). Finally, if there exists a value of Si,ef,l, with 1 = 1..G, larger than a fixed 

threshold 7, the reference tern Pl,.f is associated with Ai,ef (if there exist more with Si,ef,l > 7, then 
Airf is associated with the  PI,^^ corresponding to the highest Si,,f,l); otherwise, Ai,cf is added to the 
reference terms after associating a meaningful label with it. This association is carried out as follows. We 
lirst determine the reference term  PI,^^ more similar toAiXef. Then we generate four fuzzy sets. Two fuzzy 

sets are obtained by halving and doubling the support of  PI,.^. We name the two fuzzy sets very and 
more or less  PI,,^, respectively. The other two fuzzy sets are generated as + Pl,.f1)/2, iff # 0, and 
 PI,,^ + P I , ~ ~ + I ) / ~ ,  i ff  # F (in the cases f = 0 and f = F, no fuzzy set is generated). The results 
of   PI,^^ + P I , , ~ - I ) / ~  and (Plrf + P I , ~ ~ + I ) / ~  are two triangular fuzzy sets defined as 

Figure 13.5 Reference terms for a generic input variable X,,*. 
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Table 135 The qualitative model. 

Rule x1.1 x1.2 x2.1 x2.2 di,i 

and 

respectively. We name these two fuzzy sets as P<,J - Pl,ef-l and PI,.$ - Pl,ef+l, respectively. For 
instance, if = ML, we obtain very ML, more or less ML, L-ML, and ML-M. Finally, we select the 
most similar among the four fuzzy sets to Ai,ef and assign the corresponding label to Air J .  Once the fuzzy 
sets of all the rules have been examined, we again compute the similarity between each fuzzy set and the 
current reference terms in order to associate the most appropriate label with each fuzzy set. To generate 
the labels associated with the fuzzy sets shown in Figure 13.4, we have used a threshold T = 0.5. Note that 
no further reference term has been added. 

To interpret the rules, we follow this procedure: for each pattern z,, = [xi, xj, di j ]  in the training set, we 
feed as input the values of the coordinates of xi and xi to the TS model and measure the activation degree 
of each rule. We aim to discover whether there exists a relation between the activation of a rule and the 
values of dissimilarity. Table 13.5 shows, for each rule, the mean value aij of dissimilarity dl,, of the pairs 
(xi,x,) of patterns of the training set that activate this rule more than the other rules. This association 
between rules and dissimilarity values helps us interpret the meaning of the rules. From rule r4, for 
instance, we can deduce that if the abscissa and the ordinate of the first point are, respectively, MH and 
MH,  and the abscissa and the ordinate of the second point are, respectively, ML and M ,  then the 
dissimilarity is high. This rule can be easily verified by observing the data-set in Figure 13.2. 

We note that rules are acti~ated by pairs of points with either high or low dissimilarity. Indeed, the mean 
value of dissimilarity is close to 0 or 1.  This means that the antecedents of the rules determine regions of 
the plane which contain points belonging either to the same class or to different classes. This observation 
confirms the results shown in Table 13.3: using 15 % of points in the training pool, we achieved 82.6 % of 
correct classification. 

13.3 RELA TlONA L CLUSTERING 

Let Q = [XI , . . . , x ~ ]  be the data-set. Once the MLP has been trained or the TS has been generated and 
optimized, we compute the dissimilarity value between each possible pair (x i ,  xj) of patterns in the data- 
set Q. Such dissimilarity values are provided as an M x M relation matrix D = Idij]. The value did 
represents the extent to which x, is dissimilar to xj. Thus, the issue of partitioning patterns described 
through a set of meaningful features is transformed into the issue of partitioning patterns described 
through the values of their reciprocal relations. This issue is tackled by relational clustering in the 
literature. One of the most popular relational clustering algorithms is the sequential agglomerative 
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hierarchical nonoverlapping clustering algorithm, which generates clusters by sequentially merging pairs of 
clusters which are the closest to each other at each step (Sneath and Sokal, 1973). Another well-known 
relational clustering algorithm partitions the data-set around a fixed number of representative objects, 
denoted medoidr. The medoids are chosen from the data-set in such a way that the sum of the intracluster 
dissimilarity is minimized (Kaufman and Rousseeuw, 1987,1990). Two versions of this algorithm aimed at 
handling large data-sets were proposed by Kaufman and Rousseeuw (1987) and by Ng and Han (1994), 
respectively. The aforementioned algorithms generate crisp clusters. As we are interested in finding a fuzzy 
partition of the data-set, in the following we discuss fuzzy relational clustering algorithms. The most popular 
examples of fuzzy relational clustering are the fuzzy nonmetric model (FNM, Roubens, 1978), the assign- 
ment prototype model (AP, Windham, 1985), the relational fuzzy C-means (RFCM, Hathaway, Davenport, 
and Bekdek, 1989), the non-Euclidean relational fuzzy C-means (NERFCM, Hathaway, and Bezdek, 1994), 
the fuzzy analysis (FANNY, Kaufman, and Rousseeuw, 1990). the fuzzy C-medoids (FCMdd, Krishna- 
puram, Joshi, Nasraoni, and Yi, 2001). and fuzzy relational data clustering (FRC, Davi, and Sen, 2002). All 
these algorithms assume (at least) that D = [dij] is a positive, irreflexive, and symmetric fuzzy square binary 
dissimilarity relation, i.e., Vi, j 6 [l..M], dij 2 0, di,; = 0, and dij = d,,;. Unfortunately, the relation D 
produced by the two models may be neither irreflexive nor symmetric, thus making the existing fuzzy 
relational clustering algorithms theoretically not applicable to this relation. Actually, as shown by Corsini, 
Lazzerini, and Marcelloni (2002, 2004). these algorithms can be applied, but their convergence to a 
reasonable partition is not guaranteed (see, for instance, Corsini, Lazzerini, and Marcelloni, 2005). Indeed, 
in some data-sets used in our experiments, we observed that these algorithms tend to converge to a partition 
with completely superimposed fuzzy sets, that is, each object belongs to all clusters with equal membership 
value. To overcome this difficulty, we suggested transforming a relational clustering problem into an object 
clustering problem (Corsini, Lazzerini, and Marcelloni, 2005). 

The basic idea of our approach arises from the definition of relational clustering algorithm itself: a 
relational clustering algorithm groups together objects that are "closely related" to each other, and "not 
so closely" related to objects in other clusters. Given a set of M patterns, and a square binary relation 
matrix D = [dij], with i, j in [l..M], two patterns xi and x, should belong to the same cluster if the two 
vectors of the M strengths of relation between, respectively, xi and all the patterns in the data-set Q, and xj 

and all the patterns in Q, are close to each other. The two vectors correspond to the rows Di and Dj of the 
matrix D. As the relation strengths are real numbers, the two vectors Di and Dj can be represented as points 
in the metric space RM. The closeness between D; and Dj can be computed by using any metric defined in 
%M; for instance, we could adopt the Fuclidean or the Mahalanobis distance. Then, patterns xi and xj have 
to be inserted into the same cluster if and only if the distance between Di and Dj is small (with respect to 
the distances between Di (resp. Dj) and all the other row vectors). Based on this observation, the problem 
of partitioning M patterns, which are described by relational data, moves to the problem of partitioning M 
object data Dk, k = I..M, in the metric space RM. Thus, any clustering algorithm applicable to object data 
can be used. In particular, as proposed by Corsini, Lazzerini, and Marcelloni (2005, 2006), where the 
resulting clustering algorithm has been named ARCA, we can use the classical FCM. In the experiments, 
we used m = 2 and E = 0.001, where E is the maximum difference between corresponding membership 
values in two subsequent iterations. Moreover, we implemented the FCM algorithm in an efficient way in 
terms of both memory requirement and computation time, thanks to the use of the technique described by 
Kolen and Hutcheson (2002). 

We executed ARCA with C ranging from two to five and chose the optimal number of clusters based 
on the Xie-Beni index. Tables 13.6 and 13.7 show the percentage of correctly classified points in the five 
experiments when C = 2 for the synthetic dataset and C = 3 for the Iris data-set, respectively. Here, the 
second and fourth columns indicate the percentage of correctly classified points for dissimilarity 
relations extracted by, respectively, the MLP and the TS, and the third and fifth columns the correspond- 
ing partition coefficients. The partition coefficient (PC) is defined as the average of the squared 
membership degrees. PC essentially measures the distance the partition U is from being crisp by 
assessing the fuzziness in the rows of U. PC varies in the interval [h, 11. Empirical studies show that 
maximizing PC leads to a good interpretation of data. Thus, the closer PC is to one, the better the 
partition is. As expected, the percentage of correctly-classified points increases with the increase of 
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Table 13.6 Percentage of correctly classified points of the synthetic data-set in the five experiments. 

TS system MLP system 

Training Correctly Partition Co~~ectly Partition 
pool classified points coefficient classified points coefficient 

points in the training pool. Just for small percentages of points in the training pool, the combinations 
MLP-ARCA and TS-ARCA are able to trace the boundaries of the classes conveniently. The quality of 
the approximation improves when the points of the training pool are a significant sample of the overall 
data-set. The tables show that the class shape is almost correctly identified just with 5 % of the points of 
the data-set. Note that, as reported in Tables 13.1-13.4, the MLP and the TS are able to output only 
70.1 % and 69.6 % of correct dissimilarity values for the synthetic data-set, and 81.2 % and 80.5 % for 
the Iris data-set, when trained with training pools containing the same percentage of points. Finally, the 
high values of the partition coefficient highlight that the partition determined by the relational clustering 
algorithm is quite good. 

Tables 13.8 and 13.9 show the number of clusters (in the form (mean & standard deviation)) in the five 
experiments for, respectively, the synthetic and Iris data-sets when using the TS. It can be obsemed that 
the percentage of trials in which the number of clusters is equal to the number of classes increases very 
quickly (up to 100 1) with the increase of the percentage of points in the training pool. 

As shown in Tables 13.6 and 13.7, ARCA achieves very interesting results and is characterized by a 
certain stability. As comparison, we applied some of the most popular fuzzy clustering algorithms to the 
same relations extracted by the TS and we observed a strong dependence of the results on the initial 
partition and on the fuzzification constant m. In several trials, we found out that the algorithms converge to 
a partition composed completely superimposed fuzzy sets. Anyway, since ARCA adopts the Euclidean 
distance, it suffers from the well-known curse of dimensionality problems: when the dimensionality 
increases, distances between points become relatively uniform, thus making the identification of clusters 
practically impossible. Actually, the curse of dimensionality problems could arise because the dimension 
of the space is equal to the number of objects in the data-set. Thus, for very large data-sets, we should 
adopt distance functions more suitable for high-dimensional spaces in place of the Euclidean distance. We 
did not adopt this solution in the examples simply because it was not strictly necessary. We performed, 
however, some experiments with the version of FCM proposed by Klawonn and Keller (1999), which 
adopts the cosine distance in place of the Euclidean distance. We used large dissimilarity relations 

Table 13.7 Percentage of correctly classified points of the Iris data-set in the five experiments 

TS system MLP system 

Training Correctly Partition Correctly Partition 
pool classified points coefficient classified points coefficient 
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Table 13.8 Number of clusters in the five experiments (synthetic data-set) 

Percentage of trials with number of 
Training pool Number of clusters clusters equal to number of classes 

(10000 x 10000) created artificially. We verified that, also in this case, the results obtained by the two 
versions of FCM are comparable. For instance, we generated a data-set composed of three clusters using 
uniform random distribution of points over three nonoverlapping circles centered in (700, 400), (400, 
900), and (1000,900). with radius equal to 530. The three clusters are composed of 3606,3733, and 3606 
points, respectively. Then, we generated a dissimilarity relation (10945 x 10945) using the Euclidean 
distance. We executed the FCM algorithm with the fuzzification coefficient m and the termination error E 

equal to 1.4 and 0.01, respectively. We obtained 100 % classification rate for both the versions of FCM, 
with a partition coefficient equal to 0.95 and 0.98 for the version with the Euclidean distance and for the 
version with the cosine distance, respectively. 

To further verify the validity of ARCA, we applied a well-known density-based algorithm, named 
OFTICS (Ankerst, Breuing, Kriegel, and Sander, 1999), to the dissimilarity relation produced by the TS. 
OFTICS is an extension of DBSCAN (Ester, Kriegel, Sander, and Xu, 1996). one of the best known 
density-based algorithms. DBSCAN defines a cluster to be a maximum set of density-connected points, 
which means that every core point in a cluster must have at least a minimum number of points (MinPts) 
within a given radius (Eps). DBSCAN assumes that all points within genuine clusters can be reached from 
one another by traversing a path of density-connected points and that points across different clusters 
cannot. DBSCAN can find a r b i w l y  shaped clusters if the cluster density can be determined beforehand 
and the cluster density is uniform. DBSCAN is very sensitive to the selection of MinPts and Eps. OFTICS 
reduces this sensitivity by limiting it to MinPts. To perform clustering, density-based algorithms assume 
that points within clusters are "density reachable" and points across different clusters are not. Obviously, 
the cluster shape depends on the concept of "density reachable" that, in its turn, depends on the definition 
of dissimilarity. Thus, we cannot consider adopting density-based algorithms to solve the initial problem, 
that is, to determine the most suitable dissimilarity measure and therefore the most suitable cluster shape. 
As an example, let us consider the data-set shown in Figure 13.6 (XOR problem). The points belong to two 
different classes: each class is composed of two compact clusters located on the opposite corners of a 
square, respectively. 

A density-based clustering process performed in the feature space is not able to detect the correct 
structure, unless a specific proximity measure is defined. Indeed, the OFTICS algorithm finds four 
different clusters, i.e., it achieves 50 % classification rate. Figure 13.7 shows the output of the OPTICS 
algorithm. 

Table 13.9 Number of clusters in the five experiments (Iris data-set). 

Percentage of trials with number of 
Training pool Number of clusters clusters equal to number of classes 

5% 2.5 f 0.5 . 50% 
10% 2.8 f 0.6 60% 
15% 3.3 f 0.5 70% 
20% 2.9 f 0.3 100% 
25% 3.0 f 0.0 100% 
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Figure 13.6 The XOR problem data-set. 

On the contrary, our approach achieves 96.7 % f 2.6 % classification rate using 20 % of points as 
training pool. Furthermore, we achieve a better classification rate than OPTICS even with 5 % points in 
the training pool. This example shows that our approach does not depend on the distribution of data and 
therefore on the concept of spatial density. Our method is certainly more time-consuming, but it has been 
introduced to solve clustering problems that are not automatically solvable with density-based clustering 
algorithms. 

reachability- 
distance 

cluster-order of the objects 
~=5.6, minpts=4 

Figure 13.7 Output of the OPI?CS algorithm 
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On the other hand, since some density-based algorithms do not require distances but rather generic 
dissimilarity measures to determine the closeness of points, we can adopt OPTICS to cluster data 
described by the dissimilarity relations produced by the MLP and the TS. We performed different 
experiments and verified that the performance of OPTICS and ARCA are quite similar. In the XOR 
example, for instance, OPTICS achieves 95.6 % f 2.3 % classification rate using 20 % of points as 
training pool. 

13.4 EXPERIMENTAL RESULTS 

In this section, we briefly discuss some results obtained by applying the combination TS-ARCA to some 
well-known data-sets provided by the University of California (UCI, 2006). namely the Wisconsin Breast 
Cancer (WBC) data-set, the wine data-set, and the Haberman's Survival (HS) data-set. We discuss only 
the TS approach because, as shown in Section 13.2, it is characterized by more interesting features. 

The WBC data-set consists of 699 patterns belonging to two classes: 458 patterns are members of the 
"benign" class and the other 241 patterns are members of the "malignant" class. Each pattern is 
described by nine features: clump thickness, uniformity of cell size, uniformity of cell shape, marginal 
adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. Since 16 
patterns have a missing value, we decided to use only 683 patterns in our experiments. 

The Wine data-set contains the chemical analysis of 178 wines grown in the same region in Italy but 
derived from three different cultivars, which represent the classes. As known in the literature (Setnes and 
Roubos, 2000). only some of the 13 features are effective for classification. Thus, we performed a feature 
selection based on the correlation between classes and features, and selected the following four features: 
total phenols, flavanoids, color intensity, and OD280lOD3 15 of diluted wines. 

The HS data-set contains 306 cases from a study on the survival of patients who had undergone surgery for 
breast cancer. The three attributes represent the age of the patient, the year of the operation, the number of the 
positive axillary nodes. The two classes represent the survival status after 5 years. In this data-set, features 
have a low correlation with classes and therefore the data-set is quite difficult for clustering algorithms. 

We carried out the same experiments described in previous sections. Tables 13.10-13.12 show the 
percentage of correctly classified points af the WBC, Wine, and HS data sets in the five experiments. We 

Table 13.10 Percentage of correctly classified points of the WBC data-set in the five 
exoerirnents. 

Training pool Correctly classified points Partition coefficient 

5% 95.9% + 0.5% 0.94 f 0.03 
10% 96.1% + 0.3% 0.97 f 0.00 
15% 96.8% f 0.7% 0.96 f 0.00 
20% 96.8% f 0.3% 0.95 f 0.01 
25% 97.1%f 0.1% 0.96 i 0.01 

Table 13.11 Percentage of correctly classified points of the wine data-set in the five 
experiments. 
-- 

Training pool Correctly classified points Partition coefficient 



REFERENCES 28 1 

Table 13.12 Percentage of correctly classified points of the HS data-set in the five 
experiments. 

Training pool Correctly classified points Partition coefficient 

5% 87.0% f 2.9% 0.80 f 0.02 
10% 88.1% f 3.0% 0.80 f 0.05 
15% 90.0% f 3.4% 0.83 f 0.04 
20% 88.7% f 4.7% 0.84 f 0.05 
25% 90.6% f 5.0% 0.83 f 0.04 

can observe that the percentages of correct classifications are just quite high with training pools composed 
of only 5 % of patterns. These results compare favorably with several classification techniques proposed 
in the literature. Since our method is not a classification method because we do not suppose to know the 
labels of the classes, but rather some similarities between patterns, the results prove the effectiveness of 
the combination of learning algorithms and relational clustering algorithms. 

13.5 CONCLUSIONS 

Object clustering algorithms generally partition a data-set based on a dissimilarity measure expressed in 
terms of some distance. When the data distribution is irregular, for instance in image segmentation and 
pattern recognition where the nature of dissimilarity is conceptual rather than metric, distance functions 
may fail to drive the clustering algorithm correctly. Thus, the dissimilarity measure should be adapted to 
the specific data-set. For this reason, we have proposed extracting the dissimilarity relation directly from a 
few pairs of patterns of the data-set with known dissimilarity values. To this aim, we bave used two 
different techniques: a multilayer perceptron with supervised learning and a Takagi-Sugeno fuzzy 
system. We bave discussed and compared the two approaches with respect to generalization capabilities, 
computational overhead, and capability of explaining intuitively the dissimilarity relation. We have 
shown that the TS approach provides better characteristics than the MLP approach. 

Once the dissimilarity relation has been generated, the partitioning of the data-set is performed by a 
fuzzy relational clustering algorithm, denoted ARCA, recently proposed by the authors. Unlike well- 
known relational clustering algorithms, this algorithm can manage the dissimilarity relations generated 
by the MLP and the TS, which are neither irreflexive nor symmetric. The experiments performed on some 
real data-sets have shown the good qualities of our approach. In particular, we have observed that just 
using a significantly low percentage of known dissimilarities, our method is able to cluster the data-sets 
almost correctly. 
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