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ABSTRACT 

 

The scarcity of a sufficiently large and representative 

hyperspectral image dataset is a substantial obstacle to the 

effective development of algorithms for remote sensing 

applications. Hyperspectral images can provide rich spectral 

information for various tasks, such as land cover 

classification, vegetation monitoring, and environmental 

assessment. However, the limited availability of diverse and 

well-annotated hyperspectral datasets hinders the 

development and optimization of these models in this 

domain. For this purpose, the generation of synthetic 

hyperspectral images has emerged as a pivotal area of 

research. 

This paper aims to introduce a preliminary analysis of 

various AI-based methodologies specifically crafted to 

generate synthetic PRISMA hyperspectral images derived 

from Sentinel-2 data. By exploring innovative approaches, 

this study aims to develop novel techniques for creating 

synthetic datasets, providing valuable insights into the 

potential of synthetic hyperspectral imagery for algorithm 

training and evaluation in the absence of extensive real-

world hyperspectral datasets. 

Index Terms— Hyperspectral imagery, PRISMA, 

Artificial Intelligence, synthetic images 

 

1. INTRODUCTION 

 

Launched in March 2019, PRISMA (Hyperspectral 

PRecursor of the Application Mission) is an Earth 

observation satellite designed to capture high-resolution 

hyperspectral images of the Earth's surface, providing 

valuable data for various applications such as environmental 

monitoring, resource management, and agricultural 

assessment. 

PRISMA's hyperspectral sensor can capture a wide range 

of spectral bands, from VNIR to SWIR, allowing for detailed 

analysis of materials and vegetation on the Earth's surface. 

Characterized by these features, the hyperspectral images 

captured by PRISMA can distinguish and analyze the Earth's 

surface in numerous narrow spectral bands. This capability 

provides valuable information about the matter composition, 

for tasks such as land use and land cover classification, 

vegetation health assessment, and identification of 

environmental changes over time. However, the intricate 

nature of hyperspectral imagery demands extensive and 

diverse datasets, suitable to train pattern recognition 

algorithms.  

Various factors contribute to the challenge of the limited 

availability of hyperspectral training data. Primarily, 

obtaining hyperspectral imagery is often a complex and 

resource-intensive undertaking. Since PRISMA is a 

technology demonstrator mission, it is designed to have a 

revisit time of 28 days. Moreover, only under limited 

circumstances, it is possible to acquire off-nadir images. 

These limits, combined with the uncertainty of acquisition 

due to cloud coverage, result in a restricted pool of accessible 

datasets, causing limitations on applications that require 

frequent and timely monitoring of dynamic and rapidly 

changing phenomena on the Earth's surface. 

Thus, the above limits on hyperspectral images constrain 

several advanced applications based on hyperspectral remote 

sensing.  

To mitigate this problem, the Italian Space Agency, 

through the IRIDE program intends to launch in the next 

years a constellation of hyperspectral satellites that will 

considerably improve the revisit time. However, having a 

good revisit time may not be sufficient because of the cloud 

coverage. 

A valuable solution in scenarios where actual 

hyperspectral imagery may be limited or unavailable is the 

generation of synthetic hyperspectral images, i.e., the 

creation of artificial datasets with spectral characteristics like 

those found in real-world hyperspectral imagery. This 

approach allows training machine learning models, algorithm 

development, and testing without expensive ground truth 

hyperspectral datasets.  

However, to ensure the suitability for specific 

applications, it's crucial to validate the accuracy and 

reliability of the synthetic hyperspectral images against real-

world hyperspectral data. For these reasons, it is essential to 

generate synthetic data with a physical interpretation for 

target applications. This requirement suggests that the 

synthetic images should derive from other Earth Observation 

data with higher revisit times, such as Sentinel-2 or Landsat 

8/9 multispectral images. 
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Several methodologies exist for generating synthetic 

hyperspectral images from multispectral data, often relying 

on machine learning and image processing approaches: 

i. Spatial-Spectral Modeling. Techniques that combine 

spatial and spectral information, often called spatial-

spectral modeling, can be employed. These models 

consider the spatial relationships between pixels and the 

spectral characteristics to simulate additional spectral 

bands [1-3]. 

ii. Deep Learning and Neural Networks. Advanced 

techniques, such as deep learning and neural networks, 

can be trained on existing hyperspectral datasets to learn 

complex relationships between multispectral bands and 

corresponding hyperspectral bands. Once trained, these 

models can generate synthetic hyperspectral images 

from new multispectral inputs. Among the Deep 

Learning approaches, it is worth mentioning Generative 

Adversarial Networks (GANs). GANs, a type of 

generative model, can be utilized for generating 

synthetic hyperspectral images. GANs consist of a 

generator that creates synthetic data and a discriminator 

that distinguishes between real-world and synthetic data. 

Through an adversarial training process, the generator 

improves its ability to produce realistic hyperspectral 

images [4-5].. 

iii. Band Interpolation. Simple interpolation methods can be 

employed to estimate values for spectral bands not 

captured by multispectral data. These methods use 

existing bands as references to infer values for 

intermediate bands, effectively creating a denser spectral 

dataset [6]. 

This study aims to analyze the effectiveness of different AI-

based approaches to generate PRISMA-like hyperspectral 

images from multispectral images. 

 

2. MATERIALS AND METHODS  

 

Synthetic hyperspectral image generation methods have been 

significantly transformed by the rise of machine learning. 

Indeed, machine learning is particularly suitable for 

unraveling and capturing the complexities inherent in spectral 

patterns and intricate relationships between hyperspectral and 

multispectral data. 

In the realm of hyperspectral imaging, achieving various 

spectral bands is crucial for a comprehensive analysis, and 

the limits of real-world datasets have spurred the exploration 

of novel methodologies. Neural Networks, especially 

Convolutional Neural Networks (CNNs) and Generative 

Adversarial Networks (GANs), have demonstrated 

exceptional capabilities in reproducing the spectral 

characteristics of hyperspectral datasets and in generating 

additional synthetic bands. These capabilities enable the 

creation of rich hyperspectral imagery, fostering a more 

comprehensive understanding of the Earth's surface 

complexities. 

This study compares different types of deep-learning 

approaches, namely GANs, CNNs, and deep feed-forward 

neural networks (FFNNs). 

 

2.1. Generative Adversarial Networks 

 

Generative Adversarial Networks have emerged as a 

powerful and innovative approach for generating 

hyperspectral images, providing a means to provide realistic 

and high-dimensional spectral data. A GAN consists of two 

neural networks – a generator and a discriminator – engaged 

in an adversarial training process. 

The task of the generator network is to produce synthetic 

hyperspectral images from multispectral data. Trained on 

provided Landsat or Sentinel-2 datasets, the generator learns 

to capture the complex relationships between different 

spectral bands and generate synthetic bands that resemble 

those available in real-world hyperspectral imagery. 

The discriminator network, in contrast, is designed to 

differentiate between real-world hyperspectral images and 

synthetic ones created by the generator. This adversarial 

setup provides a feedback loop where the generator strives to 

produce synthetic images that are increasingly 

indistinguishable from real-world hyperspectral scenes. 

 

2.2. Convolutional Neural Networks 

 

Applying Convolutional Neural Networks to the generation 

of synthetic hyperspectral images from multispectral data 

requires a sophisticated and effective approach within the 

domain of remote sensing and Earth observation [7].  

CNNs, known for their capability in extracting 

hierarchical features from image data, are leveraged to create 

synthetic datasets that emulate the spectral richness of 

authentic hyperspectral scenes derived from multispectral 

observations.  

The reference architecture is composed of two 

fundamental parts: a recurrent neural network, which 

provides an internal sequential representation of the 

multispectral signal, and a decoder (or generative network) 

that converts the internal representation into the hyperspectral 

signal. 

The recurrent neural network can preserve the ordering of 

the original signal along the spectral dimension and is 

responsible for transforming the signal into a representation 

more suitable for processing by the decoder. 

The decoder, composed of mono-dimensional transposed 

convolutional layers, upsamples the signal and models the 

correlations between the narrower bands of the hyperspectral 

signal. 

 

2.3. Feed-Forward Neural Networks 

 

The simplest approach to generate synthetic hyperspectral 

images using multispectral data is based on deep feed-

forward neural networks. This type of neural network, also 
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known as a multi-layer perceptron (MLP), is designed to 

learn complex mappings between multispectral input data 

and the corresponding hyperspectral output.  

The deep feed-forward neural network consists of 

multiple layers, including an input layer, several hidden 

layers, and an output layer. The availability of multiple 

hidden layers enables the network to capture intricate patterns 

and relationships within the input multispectral data. 

 

3. EXPERIMENTAL STUDIES 

 

Synthetic PRISMA hyperspectral images have been derived 

using the CNN, GAN, and FFNN approaches, respectively. 

Both Sentinel-2 and Landsat-8 images have been used as 

input for the abovementioned techniques. 

A first qualitative analysis has been carried out on a 

synthetic PRISMA image obtained from a Sentinel-2 image. 

Fig. 1 and Fig.2 show the RGB image obtained from the 

original and the synthetic PRISMA data, respectively.   

 

 
Figure 1: RGB images generated from the original PRISMA data 

 

A further analysis has been carried out by comparing the 

average spectral signatures of the two images, as depicted in 

Fig. 3. 

In order to quantitatively assess the similarity between the 

original hyperspectral image and the one generated with the 

reference neural architecture, two metrics have been 

considered, namely ERGAS and SAM, capable of measuring 

spatial and spectral distortions. The Table 1 shows the values 

measured on a sample image. The original image has been 

acquired by PRISMA satellite on 20/06/2022, whereas the 

multispectral image, used to generate the synthetic 

hyperspectral image, has been acquired by Sentinel 2 satellite 

on 21/06/2022. 

 

 
Figure 2: RGB images generated from the synthetic PRISMA data 

The purpose of this paper is to introduce a novel 

perspective in the field of PRISMA synthetic hyperspectral 

images based on machine learning. A small case study has 

been briefly discussed to show the potential of the approach. 

Further research is necessary to achieve significant results. 

To this aim, future work will focus on further 

experimentation and investigation, as well as on further 

integration with other methods.  Moreover, quantitative 

performance indicators could be developed, based on other 

similarity metrics. 

 
Table 1 - Similarity scores between original and synthetic 

hyperspectral images 

Metric Similarity score 

ERGAS 8.6412 

SAM 0.2641 

 

 
4. CONCLUSIONS 

 

In this paper, three machine learning architectures have been 

considered for the synthetic generation of hyperspectral data 

from multispectral data, having as a reference PRISMA data: 

GANs, CNNs, and deep feed-forward neural networks 

(FFNNs). The effectiveness of these advanced techniques lies 

in their ability to discern and learn complex patterns inherent  
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Figure 3: Average spectral signatures of an urban area, obtained from the original and the synthetic PRISMA images, respectively 

 
in hyperspectral data, leading to the generation of synthetic 

images that closely emulate the characteristics of real-world 

hyperspectral scenes. This artificial augmentation of spectral 

information has proven invaluable in scenarios where 

authentic hyperspectral datasets are limited, offering 

researchers and practitioners a diverse and extensive dataset 

for training, testing, and refining algorithms tailored for 

hyperspectral image analysis. 

Although a more in-depth exploration of the approaches, and 

an enrichment of the benchmark are needed, the early 

experimental studies are promising. An extensive study in 

this direction can be a future work to bring a contribution to 

the field. 
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