
ANNEX B: ELEMENTS OF RELIABILITY  THEORY AND 
APPLICATIONS TO SAFETY  ANALYSIS

B.1 INTRODUCTION

The aim of this chapter is to provide the main tools for understanding
the  application  of  the  techniques  of  reliability  on  safety  studies.
Therefore, after recalling the definition of the main variables used
in  the  reliability  analysis,  the  focus  will  be  on  assessing  the
reliability of components and systems, simple or complex.  It
will  also  briefly  examined  a  crucial  aspect  for  applications:  the
common causes of failure and human error.
Obviously we are not going to do a full  discussion of the reliability
theory and application techniques to the analysis of complex systems,
but only introduce this theme, with sufficient understanding of its use
in the safety analysis. For further information and more details, see
the books mentioned in the references.

B.2 DEFINITIONS

Failure rate  (t): fraction of components that fail per unit of time;
Reliability  R (t): probability  that  an  apparatus  performs  the  task
assigned in a specific time interval (0-t), under certain environmental
conditions;
Unreliability Q (t): probability that the equipment has failed during
the considered time interval (0-t) (it does not carry out the function
assigned at the instant t,  for a fault occurred at any instant in the
interval 0 -t);
Availability A  ():  probability that the system is operating properly
during the mission time 
Unavailability I (): probability that the system is not able to perform
its function during the mission time ,  namely fraction of   for which,
an average, the system is defective (Relative Dead Time).

B.3 CLASSIFICATION OF  COMPONENTS FAILURES 
To  determine  the  reliability  of  components  produced  industrially  in
large  quantities  (eg.  electrical  components,  such  as  resistors,



capacitors, transistors, etc.), we can do an experiment, putting them
into  operation  simultaneously  in  a  large  number  N0 in  the  same
conditions,  according  to  the  manufacturer's  specifications  (see  Fig.
B.1).
As shown in the upper part of Fig. B.1, the number of components in
operation is  reduced rapidly in  the initial  stage of  the experiment;
then the rate of decrease is stabilized for a long period of time to a
minimum value, while it returns to increase towards the end of the life
of  the  components.  The  graph  shows  clearly  the  three  periods
mentioned above, and their name:
0 - t1, "trial stage";
t1 - t2, "useful life";
> t2, "usury" or "old age."

Fig. B.1 Periods characteristic of operation and 
corresponding failure classification of the components

According to the definition given in the previous paragraph, you can
easily draw the trend of the corresponding failure rate  as a function



of time, shown in the lower part of the same Fig. B.1, It is the well-
known  curve  "bathtub",  leading  to  the  classification  component
failures in:
"childish", due to defects and imperfections of construction that are
evident readily during the break-in period,  leading to the exclusion
from the use of components that are affected;
"random", during the period of useful life, corresponding to a rate of
fault minimum and almost  constant;
"usury", during the corresponding period and due to the deterioration
of the characteristics of the component by the stresses to which has
been subjected during operation.

Previous  observations  imply  that  for  optimum  reliability,  it  is
necessary  to  make a  proper  break-in  components,  using the  same
only during the period of useful life; consequently it is also necessary
to  perform  maintenance  operations  programmed,  by  replacing  the
components which have reached the end of their useful life. Only by
doing so you can rely  on a minimum and also almost constant,  in
time, failure rate for the components used.

B.4 ASSESSMENT OF COMPONENTS RELIABILITY

B.4.1 Non repairable components

Assuming,  as  usual  engineering  practice,  that  is  possible  to
approximate the probability with the observed frequency (hypothesis
acceptable if the statistical basis is sufficiently wide), the reliability is
given by the relation:

R (t) = N / N0       (B.1)

where N is the number of components "survivors" at time t, and N0 is
the initial number of components at the time t=0. 

Similarly, the unreliability is expressed by the relation:

Q (t) = 1-R (t) = Ng / N0 (B.2)



where  Ng is  the  number  of  failed  components  between  the  initial
instant and the generic time t.

Note  that  the  two  relationships  listed  above  are  valid  for  non-
repairable components, or that, once they faults, remain in a state of
failure for the whole duration of the observation.
The  definition  of  the  failure  rate  can  be  expressed  with  the
relationship:

              (B.3)

from which, according to (1) is immediately obtained:

              (B.3’)
Solving:

(B.4)
and under the assumption that  is constant over time:

R = e -t  ~  1-t                         if t<<1   (B.4’)

According  to  the  fundamental  theorem  of  probability  theory  we
therefore have:

Q (t) = 1 - e -t   ~  t                  if t << 1   (B.5)

In the study of a system composed of non-repairable components (eg.
missile, etc.), the probability that the system fails during the mission
time  will be given by Q(). Furthermore:

A() = R()   and              I() = Q() (B.6)



The assumption of constant (and minimum) failure rate is generally
valid  for  units  (1)  that  have  been  passed  the  break-in  period
(elimination  of  defects  "childish",  namely  due  to  defects  in  the
construction,  trivial  errors,  etc.)  and are  used during the period of
"useful life", before they will overtake the usury. Using always process
units in the period of useful life (and then by making systematic  and
scheduled maintenance,  with units replacement at the end of their
useful  life),  the  mean time between failure  period  (MTBF -  Mean
Time Between Failures) is:
 
MTBF = 1/ (B.7)

More  generally  one  can  demonstrate  the  validity  of  the  following
relationship:

                  (B.8)

valid whatever the mathematical expression of R (t).
The previous definitions and relationships extends easily to the case
of process units  with cyclic  operation,  with the replacement of  the
MTBF with the average number of cycles of correct operation "c" (to
be put in previous relationship (B.7) in place of 1 / ).

B.4.2 Repairable components 

Differently from the previous case (and most interest cases for the
industry), the failing component is usually repaired (or replaced) and
put  back  into  operation.  In  this  case,  it  becomes  important  the
concept of Mean Time To Repair (MTTR), namely the time interval
during which the component remains in a fault state.
Similarly to the failure rate, it can be defined a repair rate m:

m = 1/MTTR                   (B.9)

For repairable components the availability is therefore defined as:

1 In this chapter, the term "unit" is meant indifferently component, equipment or system.



A = MTBF / (MTBF + MTTR)                    (B.10)

and analogously the unavailability as:

I = 1 - A = MTTR / (MTBF + MTTR) =       (B.11)

   

B5 RELIABILITY OF PROTECTION AND SAFETY SYSTEMS 

For  equipment and systems devoted to protection and safety,  it  is
necessary to premise a further classification of types of failure:
•  faults  in  favor  of  safety (fail  safe),  namely  involving  the
intervention of the unit in the absence of a dangerous situation. In
consequence of an intervention "fail  safe",  the plant changes state
from that of normal  operation to a situation of greater safety.  This
automatically reveals the failure of the unit.
• faults to the detriment of safety (fail to danger), which involve
the non-availability of a unit in the event that it be called to operate
as a result of a failure (demand) of the process system.

The faults fail to danger can be revealed (and in such case promptly
repaired) or  not revealed; in the latter case they can be detected
only by a request of the process system (which cannot be satisfied
and therefore result in an incident) or from an ad hoc test at the end
of the mission time. Clearly, as the risk of incidents arises mainly from
occurrence of faults fail to danger, the designer puts a certain cure in
minimizing the relative failure rate, particularly for faults not revealed.

We have already mentioned that an incident in a highly dangerous
plant  occurs  only  for  the  concomitant  occurrence of  a  fault  in  the
system process (demand) and the failure of the system for protection
and safety. Hence the definition of "unavailability" of a safety and
protection  system  such  as  probability  of  non-intervention
following  a  request  of  the  process  system.  In  this  way  the
probability of occurrence of an accident is given by the product of the
probability of failure of the process system for the unavailability of the
protection system.



For protection system failures "fail to danger" unrevealed, it is easily
to demonstrate that the unavailability for a mission time   (interval
between two successive tests, which can reveal the faulted protection
system) is given by:

                                  (B.12)
Ultimately this relation expresses the fact that I is the average value
of Q (t) within the mission time. I is also equal to the Relative Dead
Time,  namely  the  fraction  of  the  time   for  which  on  average the
protection system is broken:

                        (B.13)

In  the  previous  relation  dQ  is  the  probability  that  the  protection
system fails at a generic instant t, in which case remains faulted for
the remaining interval (t-).
In the case of a protection system with exponential reliability:

Q (t) = 1 - e-t     ~ t                if  t << 1
and:

 ~                     (B.14)

In the previous expression it is implicitly admitted that the tests are all
perfect and of infinitesimal duration (namely negligible compared to
). With this hypothesis would be sufficient to reduce the time interval
between  two  tests  to  reduce  accordingly,  as  you  want,  the
unavailability of the protection system, in accordance with (B.14). At
the limit, by tending  to zero, I also tends to zero, against the obvious
conclusion that if a system of protection is constantly under test, it is
never  available  to  perform  its  function  (and  therefore  has
unavailability equal to 1).
Introducing the test  duration  t (and including in  t the repair  time
when the test reveals a fault), the previous relationship becomes:

                          (B.15)



given the fact that during the test the system is not available and its
Q is  1.  The latter  relationship is  suitable to  an optimization of  the
interval  between  two  successive  tests;  The  minimum  is  obtained
deriving equation (B.15) and putting the derivative to 0:

                     (B.16)
from which:

                                 (B.17)
By substituting this optimum mission interval in (B.15), we have:

                    (B.18)

Previous  conclusion  is  consequence  of  the  hypothesis  of  perfect
testing  (which  do  not  introduce  faults).  This  hypothesis  can  be
removed,  assuming  that   is  function  of  the  number  of  tests  and
increases by increasing the number of tests:

 = 0 . f ()                          (B.19)

The simplest expression for (B.19) is

 = 0.                             (B.19')

that, by substituting in (B.16), leads to the relationship:

                 (B.20)

To  conclude  this  section  we  have  to  treat  the  case  of  a  system
malfunction fail  to  danger revealed.  The solution of the problem is
immediate, remembering that unavailability is equal to the Relative
Dead Time and therefore the relationship (B.11) holds, already seen in
the case of repairable parts. In addition it is implicit the assumption
that the plant continues to be operated during the repair time. In the
case of installations with a high hazard, this can be admitted only if



there are other safety systems capable of carrying out the function
performed by the system under repair.

B.6 RELIABILITY ASSESSMENT OF 'SIMPLE SYSTEMS

The most common cases of reliability and unavailability calculation, in
the field of safety reporting, are those schematized with the series
and  parallel  logics.  Any  case  also  other  logics  are  used,  as  the
majority and reserve ones.

B.6.1 System with series logic (Fig. B.2)

Fig. B.2 - Scheme of a system  with series logic

In the case of non-repairable components, the reliability of the system
as function of time t is given by:

RS = RA·RB                                   (B.21)

and the unreliability by:

QS = QA + QB - QA QB                     (B.22)

More broadly in the case of N units, as to have the correct operation of
the system it is necessary that all the units are working properly, the
reliability of the system is simply given by the product of the reliability
of the individual units:

                                     (B.21’)

If the single units have exponential reliability, the system also has 
exponential reliability, with a failure rate equal to the sum of those of 
the individual units; in fact the (B.21’) becomes:



    (B.21’’)

where:

(B.23)

B.6.2 System with parallel logic (Fig. B.3)

Fig. B.3 - Scheme of  system with parallel logic

In the case of non-repairable components, the reliability of the system
at time t is given by:

RP = RA + RB - RA*RB                                           (B.24)

and the unreliability by:

QP = QA * QB                                      (B.25)

Here, it is necessary that all the units that constitute the system (and
are working simultaneously with the capacity of achieving the system
goal even though only one unit is functioning regularly) fail for having
a situation in which the system does not perform its functions.
In case of n units with parallel logic:

                                                 (B.25’)

If all the units have exponential reliability, the previous relationship 
becomes:



                  (B.25’’)

   (B.24’)

In the  particular case, of practical interest, of n  equal units  that
constitute the system,
with t << 1, the relationship (B.25") becomes:

Qp = (t) n                                                (B.25''')

Even  if  the  components  A  and  B  have  constant  failure  rate,  the
parallel system is characterized by a failure rate function of the time:
null  at the initial  time, then increases,  more or less rapidly,  to the
value corresponding at the component more reliable (with lower ).

B.6.3 Systems with majority logic

A third case of elementary logic, of considerable practical interest for
the realization of safety systems, is that of the majority logic. Such
logic allows to keep the advantages of the parallel logic minimizing
the number of spurious trips of the system for faults "fail safe".
The reliability of a system with majority logic m/n (i. e. in which for the
functioning of  the system it  is  required the correct  operation of  m
units on n available) is immediately obtained from the development of
Newton's binomial formula:

(R + Q) n=1
(B.26)

          

If R and Q are the reliability and unreliability of the single unit, in the
last  expression  the  first  term  is  the  probability  that  all  units  are
working properly, the second is that (n-1) units are working properly
and any one fails , etc. . Therefore, the reliability of the system with
logic m/n is given by the sum of the first (m + 1) terms of (B.26), while
the unreliability is the sum of the remaining (n-m) terms:



     (B.27)

If we denote by r = n-m + 1 the minimum number of units that must 
fail because the system fails we obtain:

                (B.28)

In the usual case of units with  exponential reliability, with t << 1, 
equation (B.28) can be approximated by the first term:

                                                 (B.28’)

A particularly important case is the logic 2/3; in this case the (B.28') 
becomes:

        (B.29)

B.7 THE UNAVAILABILITY OF REDUNDANT SAFETY  SYSTEMS 

For systems with series logic,  the treatment done in the preceding
paragraph B5 (relationships from (B.12) to (B.20))  for the case of an
individual apparatus are immediately applicable.
The unavailability for faults fail to danger unrevealed of systems with
parallel  or  majority   logic   is  obtainable  by  applying  the  general
relationship  (B.12);  for  example,  in  the  case  of  the  logic  1/2  and
parallel (with the usual approximations, valid for t << 1), we have:

                        (B.30)

 Similarly in the case 1/3, one can achieve immediately the following 
result:



                  (B.31)
Taking into account the contribution of testing and maintenance, in
the case of test and maintenance (of average duration t) carried out
simultaneously at the end of the mission time  the relationship (B.30)
becomes (2):

                        (B.32)

This case is really theoretical and substantially irrational; if you have
two units, in order to have always at least one unit running, you can
stagger  the  tests  of  the  two  units.  The  smallest  unavailability  is
achieved by  stagger tests of  /2; then (Fig. B.4), the unreliability of
the first unit is given by the usual Q '=  t, while that of the second
(after commissioning the test at the instant - / 2) is Q " = (t +  / 2),
from which:

Qp = 2t(t+/2)                                           (B.33) 

in the interval where both units work, and

Qp = t   when a unit is under test.

The evaluation of the unavailability can be made with reference to the
interval 0-/2, being the situation clearly repetitive (Fig. B.4):

                    (B.34) 

By developing the (B.32) and unless than infinitesimals of higher 
order, we obtain:

2 In this and in subsequent pages the apex "pc" stands for "contemporaneous tests", the 
apex "ps" for staggered tests.



                             (B.35) 

By comparing this relationship with the (B.32), one can immediately
see that the term due to the faults fail to danger not detected of the
two units is reduced by a factor of 8/5, while the contribution of the
tests and maintenance is reduced by some orders of magnitude.
By operating in a similar way in the case of logic 1/3, it is easily shown
that, in case of tests and maintenance contemporary in the 3 units,
the unavailability is given by the relation:

                             (B.36)

while with tests staggered at intervals equal to  / 3, one achieves the 
following result:

                       (B.37)

smaller than the previous one by a factor 3 for the part due to failures
of the various units and several orders of magnitude with regard to
the contribution of the tests and maintenances.



Fig. B.4 - Graphical representation of the unreliability and the
unavailability  (dashed  areas)  of  a  protection  system  with
parallel logic 1/2 and tests staggered of  / 2.

Finally, in the case of systems with majority logic 2/3, reminding that
Q2/3 ~ 322, we have:

                       (B.38)

in the case (theoretical) of contemporaneous tests and maintenances
of all units at the end of the interval of mission.

Usually  the  best  results  are  achieved  by  staggering  the  tests  at
intervals of  / 3. It is left to the reader the solution, yet simple, of the
problem of determination of the unavailability in this case, warning
that one needs to consider, during the tests and maintenances, two
possibilities:



- the unit under test is excluded and the logic becomes 2/2; in this
case the system has  unreliability sum of those of the remaining
units: Q = t + (t + /3) = 2t + /3;

- the unit under test is replaced by a signal in the shutter release
position, for which the logic of the remaining units becomes 1/2: Q
= 2t (t+/3).

A  remark  deserves  explicit  considerations,  about  the  fact  that
relationships (B.35) and (B.37), valid for tests staggered, seem not to
allow optimization of the mission interval   (on the contrary, this is
possible  in  the  case  of  contemporaneous  tests  and  repairs  -
relationships (B.32), (B.36) and (B.38)). In this regard it can be stated
that:

• staggering the tests, the optimization problem for  is less important
because, during the test drive, one (or more) unit remains operational;
• optimization is still possible, but in the development of relationships
(B.35), (B.37) or similar one must include the infinitesimal terms for
higher order omitted in previous formulas.

To complete this section, it should be noted that the all the previous
formulas (and the similar one valid in case of logics 1/4,  2/4,  etc.)
assume the complete independence between the various units, never
fully achievable. Usually, there are dependencies between the various
units due to design, construction and installation, to the location on
the system, etc. These dependencies will ultimately result in a finite
probability of  common failures  or otherwise  contemporary loss of
function;  this  probability  is  orders  of  magnitude  greater  than  that
calculated in the hypothesis of complete independence of the various
units.  Operational  guidance  on  this  topic  (which  is  critical  for  risk
analysis) is a very important topic.

B.8 METHODS FOR THE  RELIABILITY ANALYSIS OF COMPLEX 
SYSTEMS

In order to study the probability of failure of a complex system several
methods  have  been  developed.  These,  in  addition  to  being  a
(relatively) simple calculation tool for obtaining this probability, always
provide  qualitative information also of considerable importance for



the knowledge of the system and allow then to make decisions based
on  a  knowledge,  as  far  as  possible  complete  and  correct,  on  the
system under examination.
The main techniques used for this purpose, on which we will  focus
briefly at application level, have already been introduced in previous
chapters:  the fault  tree and  events tree,  logic  diagrams borrowed
from the decision theory.

B.8.1 Fault tree  method

The fault  tree is  a  deductive technique that  analyzes a particular
event ("Top Event") for identify the causes.
For a proper construction of the fault tree of a complex system it is
appropriate the use techniques such as the Hazard and Operability
Analysis (HAZOP) and FMEA (Failure Mode and Effects Analysis), that
help  identify  the  "Top  Events"  and  the  logical  structure  that
determines them through a comprehensive and consistent analysis of
the system.
The analysis by fault tree proceeds through the following steps:
- Construction of the tree;
-  Qualitative  analysis: solution  of  the  logic  tree  by  applying  the
rules  of  Boolean  algebra,  for  the  identification  of  "minimal  cutting
sets " ("Minimal Cut Sets-MCS") of the system;
-  Quantitative analysis:  solution of  the unavailability  of  the "Top
Event" or of the expected number of events during the mission time,
as the sum of the unavailability or of the number of events of the
individual "MCS".

A minimum set of cutting (MCS) is a combination of events, not further
subdivided  (hence  the  adjective  "minimum"),  whose  occurrence
involves  the  occurrence  of  the  "Top-Event".  The fault  tree  analysis
allows the detection of events that can lead directly to the "Top Event"
(MCS of the first order), the MCS of order 2 (for which is required the
occurrence of two independent events), etc .; at the end you can also
list  the different "Minimal Cut Sets" in order of relative importance
(contribution to the probability of occurrence of the "Top Event").

The rules of Boolean algebra are recalled in Appendix B.1, while an
example of application of the fault tree method is shown in Appendix
B.2.



The fault tree is currently perhaps the most used tool in the field of
safety  analyzes  for  the  study  of  the  causes  of  accidents,  the
identification of the most critical components for the assessment of
the effects of different maintenance policies (time intervals between
tests, etc.) and to quantify the probability of an accident.

Note: the fault tree technique assumes that all basic events listed are
independent.  In  reality  this  is  not  always  true  (e.g.  components
where  the  probability  of  failure  depends  on  the  state  of  failure  or
performance  of  another  component,  or  dependencies  caused  by
maintenance).  These  causes  of  dependence  must  be  taken  into
account with the adoption of appropriate techniques.

B.8.2 Event Tree Method

In  contrast  to  fault  tree,  the event tree technique is  an  inductive
method  which,  from  the  knowledge  of  the  possible  states  of
components, enables to build the set of all possible "stories" of the
system.
The  logical  process  start  on  the  assumption  that  a  certain  event
(initiating event) has occurred; then the tree is constructed studying
all  the  possible  ramifications,  depending  on  the  success  or  not  of
action of various protection systems.

The stories constructed by the event tree are mutually exclusive and
are caused by the simultaneous occurrence of all events belonging to
the branch of  the tree that  defines them.  Their  probability  is  then
expressed as a product of the probabilities of the nodes of the tree;
the  probability  of  more  stories  is  the  sum  of  the  probability  of
occurrence of each individual story.

Differently from the fault tree, the event tree method allows to treat,
with greater flexibility, dependencies between events and to simulate
the  variation  of  the  probability  of  an  event  as  a  function  of  the
occurrence  or  not  of  previous  events.  In  this  regard,  see  the
explanatory example shown in Appendix B.3.
Within  the  framework  of  safety  analysis,  currently  the  event  tree
founds aso application in the analysis of phenomenologies consequent



to an event (e. g.,  study of the probability of the different possible
scenarios  resulting  from  a  given  release,  in  dependence  of  the
presence of ignition, of particular weather conditions, etc.).



Appendix B.1 Elements of Boolean Algebra













Appendix B.2 Fault Tree Development and Application

























































Appendix B.3 Event Tree Development and Application




















