Table 6.2: Example of a generic database.						
Component and Failure Modes	Mean	Median	Error Factor	Component Boundary		
Pumps						
Motor-driven				Pump and motor; excludes control circuits.		
Failure to start	3E-3/d	1 E-3/d	10			
Failure to run, given start						
Normal Environment	3E-5/h	1 E-5/h	10			
Extreme Environment	3E-3/h	1 E-3/h	10			
Turbine-driven				Pump, turbine, steam and throttle		
Failure to start	3E-2/d	1 E-2/d	10	valves, and governor.		
Failure to run, given start	1 E-5/h	1 E-5/h	3			
Diesel-driven				Pump,diesel, lube-oil system, fuel oil, suction and exhaust air, and		
Failure to start	1 E-3/d	1E 3/d	3	starting system.		
Failure to run, given start	8E-4/h	1 E-4/h	30			

4.4.9 **Lognormal Distribution**

The lognormal distribution is used quite frequently in reliability and safety studies. The relationship to normal distribution is as follows: if the stochastic variable ln(x) has a normal distribution, x has a lognormal distribution. The probability density function is given by:

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left[-\frac{\{\ln(x)-\mu\}^2}{2\sigma^2}\right]$$
 (4.35)

The error factor is defined as follows:

$$\mathsf{EF} = \sqrt{\frac{\mathsf{X}_{0.95}}{\mathsf{X}_{0.05}}} \tag{4.36}$$

4.7.2 Continuous distributions

The following inputs are required.

Generic failure data : Failure rate

Error factor

Plant-specific data : Number of failures

Exposure (operating time or calendar time)

The generic error factor (EF) is a measure of the uncertainty in the generic information. It is the square root of the ratio of the 95 per cent percentile and the 5 per cent percentile. The percentiles are the upper and lower value of the uncertainty interval.

$$\mathsf{EF} = \sqrt{\frac{\mathsf{P}_{95\%}}{\mathsf{P}_{5\%}}} \tag{4.83}$$

Table 6.3: Example of ranges for pumps.					
Component type	Failure mode	Range			
Diesel-driven pump	Fail to start Fail to run	3E-4 - 3E-2 -/d 1E-3 - 3E-2 -/h			
Motor-driven pump	Fail to start Fail to run	3E-4 - 3E-2 -/d 1E-4- 3E-4-/h			
Turbine-driven pump	Fail to start Fail to run	3E-3 - 3E-2 -/d 1E-5 - 1E-3 -/h			

Table 6.4: Components for which in general plant-specific data can be collected.					
Component	Туре	Failure mode			
Diesel Generator		- Fail to run - Fail to start			
Pumps	- Motor-driven -Turbine-driven	- Fail to run - Fail to start			
Valves	- Motor-operated- Medium-operated- Check- Relief- Manual- Safety	- Fail to open - Fail to close			

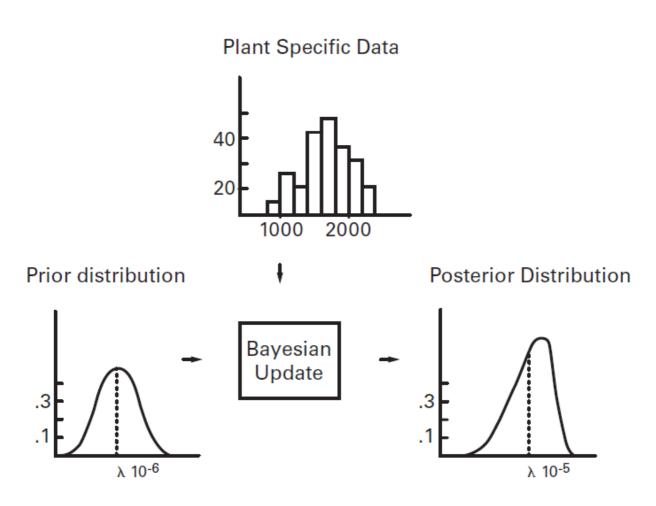
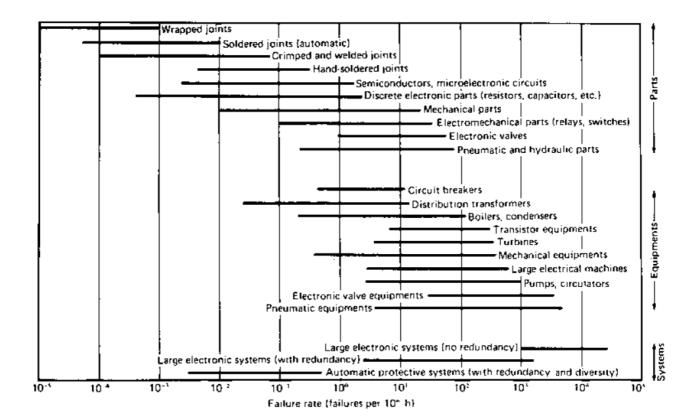



Figure 6.6: Example of Bayesian update technique.

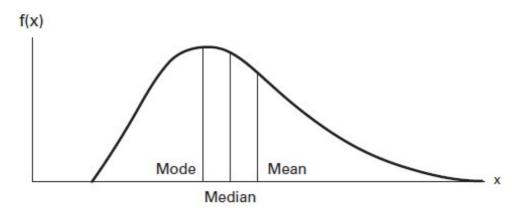


Figure 4.2: Mean, median and mode of a distribution.