

Dipartimento di Ingegneria Civile e Industriale

«Scienza e Tecnica della Prevenzione Incendi» A.A. 2013 - 2014

Resistenza al fuoco delle strutture

Pietro Croce p.croce@ing.unipi.it

Regolamento UE 305/2011

Allegato I

REQUISITI DI BASE DELLE OPERE DI COSTRUZIONE

Le opere di costruzione, nel complesso e nelle loro singole parti, devono essere adatte all'uso cui sono destinate, tenendo conto in particolare della salute e della sicurezza delle persone interessate durante l'intero ciclo di vita delle opere. Fatta salva l'ordinaria manutenzione, le opere di costruzione devono soddisfare i presenti requisiti di base delle opere di costruzione per una durata di servizio economicamente adeguata.

- 1. Resistenza meccanica e stabilità
- Le opere di costruzione devono essere concepite e realizzate in modo che i carichi cui possono essere sottoposti durante la realizzazione e l'uso non provochino:
- a) il crollo, totale o parziale, della costruzione;
- b) gravi ed inammissibili deformazioni;
- c) danni ad altre parti delle opere di costruzione, o a impianti principali o accessori, in seguito a una grave deformazione degli elementi portanti;
- d) danni accidentali sproporzionati alla causa che li ha provocati.

Regolamento UE 305/2011

Allegato I

2. Sicurezza in caso di incendio

Le opere di costruzione devono essere concepite e realizzate in modo che, in caso di incendio:

- a) la capacità portante dell'edificio possa essere garantita per un periodo di tempo determinato;
- b) la generazione e la propagazione del fuoco e del fumo al loro interno siano limitate;
- c) la propagazione del fuoco a opere di costruzione vicine sia limitata;
- d) gli occupanti possano abbandonare le opere di costruzione o essere soccorsi in altro modo;
- e) si tenga conto della sicurezza delle squadre di soccorso.

•••••

Situazione Normativa Italiana

NTC2008

Eurocodici + Appendici tecniche nazionali in accordo con il punto C.3 del DM 16/02/2007

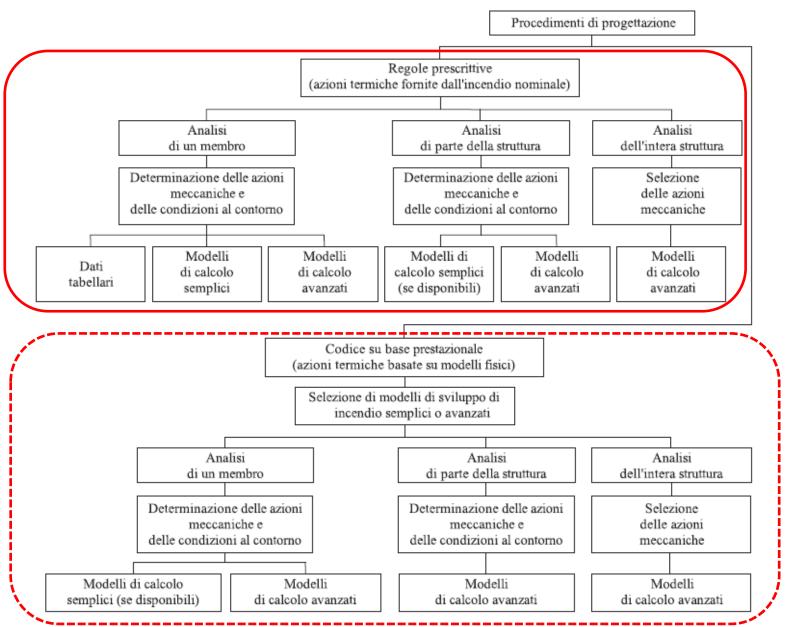
- C.3 I metodi di calcolo da utilizzare ai fini del presente decreto sono quelli contenuti negli eurocodici di seguito indicati se completi delle appendici contenenti i parametri definiti a livello nazionale (NDPs):
- C.3.1 EN 1991-1-2 «Azioni sulle strutture Parte 1-2: Azioni generali –Azioni sulle strutture esposte al fuoco»
- C.3.2 EN 1992-1-2 «Progettazione delle strutture di calcestruzzo Parte 1-2: Regole generali Progettazione strutturale contro l'incendio»
- C.3.3 EN 1993-1-2 «Progettazione delle strutture di acciaio Parte 1-2: Regole generali Progettazione strutturale contro l'incendio»
- C.3.4 EN 1994-1-2 «Progettazione delle strutture miste acciaio calcestruzzo Parte 1-2: Regole generali Progettazione strutturale contro l'incendio»
- C.3.5 EN 1995-1-2 «Progettazione delle strutture di legno Parte 1-2: Regole generali Progettazione strutturale contro l'incendio»
- C.3.6 EN 1996-1-2 «Progettazione delle strutture di muratura Parte 1-2: Regole generali Progettazione strutturale contro l'incendio»
- C.3.7 EN 1999-1-2 «Progettazione delle strutture di alluminio Parte 1-2: Regole generali Progettazione strutturale contro l'incendio»

Situazione Normativa Italiana

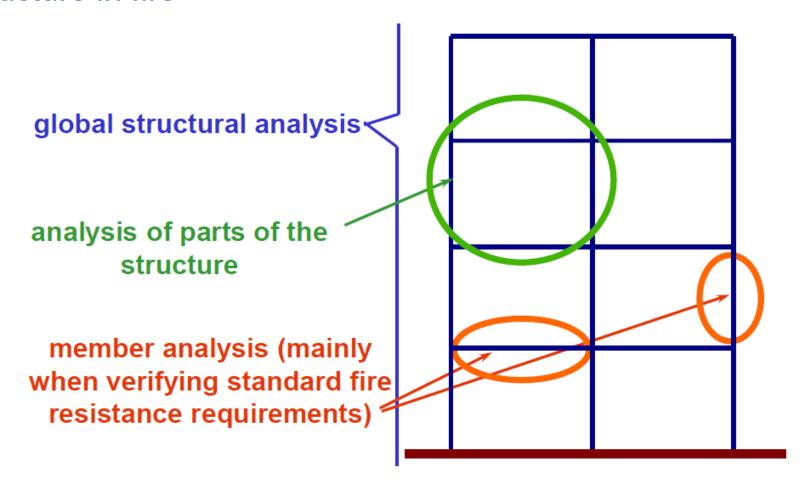
Conseguentemente il punto C4 non è più valido:

C.4 In attesa della pubblicazione delle appendici nazionali degli eurocodici, è possibile limitare l'impiego dei metodi di calcolo alla

sola verifica della resistenza al fuoco degli elementi costruttivi portanti, con riferimento agli eurocodici indicati in C.3.2, C.3.3, C.3.4 e C.3.5 con i valori dei parametri da definire a livello nazionale presenti nelle norme stesse come valori di riferimento ovvero con riferimento alle norme UNI di seguito indicate :


C.4.1 UNI 9502 «Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso» C.4.2 UNI 9503 «Procedimento analitico per valutare la resistenza al fuoco degli

C.4.3 UNI 9504 «Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di legno»


Le norme UNI citate sono state abrogate

elementi costruttivi di acciaio»

EN 1991-1-2 – Procedimenti di progettazione

Different design approaches for mechanical response of structure in fire

Curve nominali di temperatura dell'EN1991-1-2

Curva temperatura - tempo normalizzata

(1) La curva temperatura - tempo normalizzata è fornita dall'espressione:

$$\Theta_{\rm q}$$
 = 20 + 345 \log_{10} (8 t + 1)

[°C]

(3.4)

dove:

 $\mathcal{O}_{\mathbf{q}}$ è la temperatura del gas all'interno del compartimento antincendio

t è il tempo

[°C]; [min].

(2) Il coefficiente di trasferimento di calore per convezione è:

$$\alpha_c = 25 \text{ W/m}^2\text{K}$$

Curva dell'incendio esterno

(1) La curva di riscaldamento dell'incendio esterno è fornita dall'espressione:

$$\Theta_{\rm q} = 660 (1 - 0.687 \,{\rm e}^{-0.32 \,{\rm t}} - 0.313 \,{\rm e}^{-3.8 \,{\rm t}}) + 20$$

[°C]

(3.5)

dove:

 Θ_{q} è la temperatura del gas in vicinanza dell'elemento [°C];

t è il tempo

[min].

(2) Il coefficiente di trasferimento di calore per convezione è:

$$\alpha_c = 25 \text{ W/m}^2\text{K}$$

Curva degli idrocarburi

(1) La curva temperatura - tempo relativa all'incendio di idrocarburi è fornita dall'espressione:

$$\Theta_{\rm g}$$
 = 1 080 (1 - 0,325 e^{-0,167 t} - 0,675 e^{-2,5 t}) + 20

[°C]

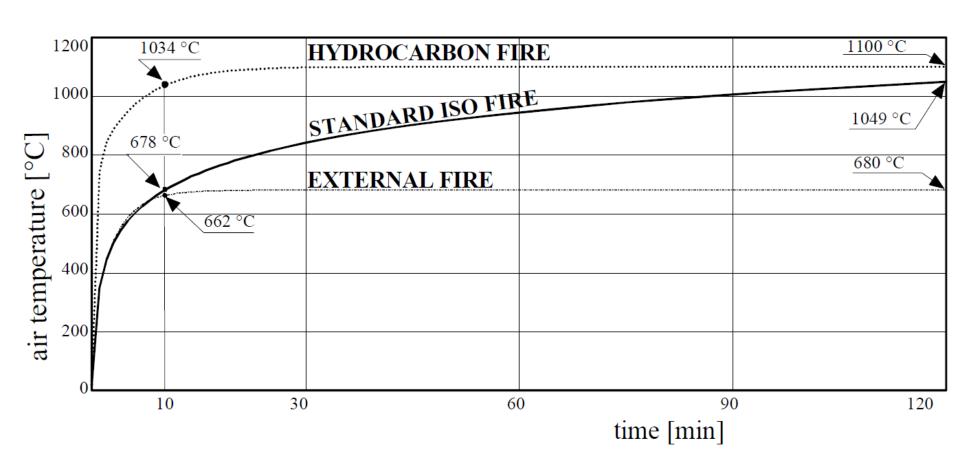
(3.6)

dove:

 $\mathcal{O}_{\mathbf{q}}$ è la temperatura del gas all'interno del compartimento antincendio

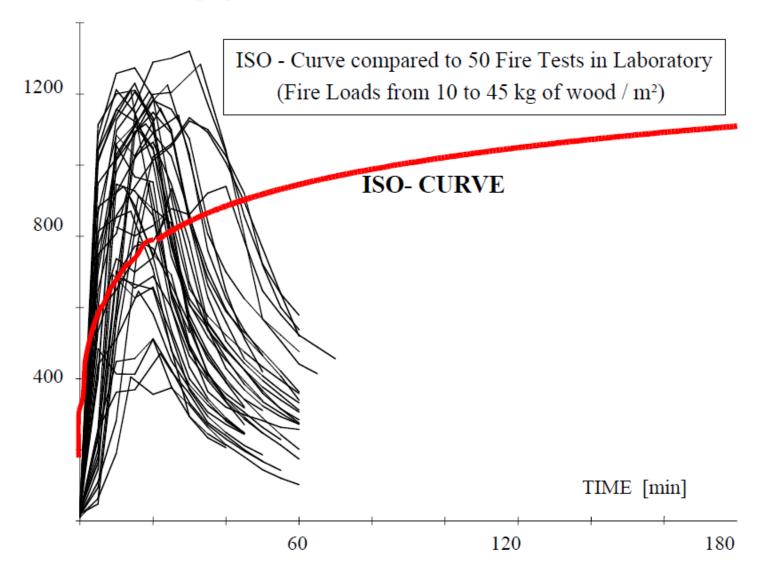
[°C];

t è il tempo


[min].

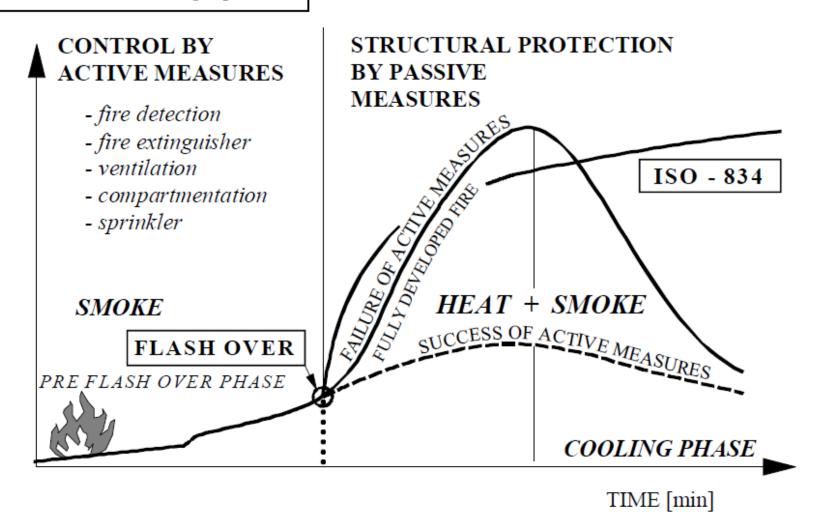
(2) Il coefficiente di trasferimento di calore per convezione è:

(3.7)

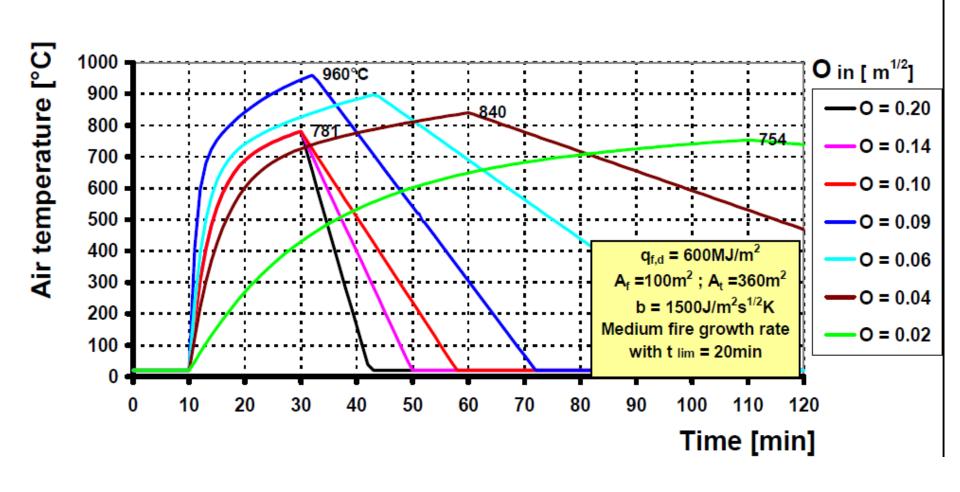

$$\alpha_c = 50 \text{ W/m}^2\text{K}$$

Curve nominali di temperatura dell'EN1991-1-2

Curve naturali confrontate con la curva d'incendio standard


GAS TEMPERATURE [°C]

Pietro Croce - Resistenza al fuoco delle strutture


Fasi dello sviluppo di un incendio naturale

GAS TEMPERATURE [°C]

Curve naturali d'incendio in funzione del fattore d'apertura O

Combinazioni di carico NTC2008

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Verifiche allo SLU

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

Tabella 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente γ _F	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,0 1,5	0,0 1,5	0,0 1,3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

Tabella 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ 0j	Ψ 1j	Ψ 2j
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.1.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.1.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Tabella 3.1.II - Valori dei carichi d'esercizio per le diverse categorie di edifici

Cat.	Ambienti	$\frac{\mathbf{q_k}}{[\mathbf{kN/m}^2]}$	Q_k [kN]	H_k [kN/m]
A	Ambienti ad uso residenziale. Sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi. (ad esclusione delle aree suscettibili di affollamento)	2,00	2,00	1,00
В	Uffici. Cat. B1 Uffici non aperti al pubblico Cat. B2 Uffici aperti al pubblico	2,00 3,00	2,00 2,00	1,00 1,00
C	Ambienti suscettibili di affollamento Cat. C1 Ospedali, ristoranti, caffè, banche, scuole Cat. C2 Balconi, ballatoi e scale comuni, sale convegni, cinema, teatri, chiese, tribune con posti fissi Cat. C3 Ambienti privi di ostacoli per il libero movimento delle persone, quali musei, sale per esposizioni, stazioni ferroviarie, sale da ballo, palestre, tribune libere, edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune	3,00 4,00 5,00	2,00 4,00 5,00	1,00 2,00 3,00
D	Ambienti ad uso commerciale. Cat. D1 Negozi Cat. D2 Centri commerciali, mercati, grandi magazzini, librerie	4,00 5,00	4,00 5,00	2,00 2,00
E	Biblioteche, archivi, magazzini e ambienti ad uso industriale. Cat. E1 Biblioteche, archivi, magazzini, depositi, laboratori manifatturieri Cat. E2 Ambienti ad uso industriale, da valutarsi caso per caso	≥ 6,00 —	6,00	1,00*
F-G	Rimesse e parcheggi. Cat. F Rimesse e parcheggi per il transito di automezzi di peso a pieno carico fino a 30 kN Cat. G Rimesse e parcheggi per transito di automezzi di peso a pieno carico superiore a 30 kN: da valutarsi caso per caso	2,50	2 x 10,00	1,00**
Н	Coperture e sottotetti Cat. H1 Coperture e sottotetti accessibili per sola manutenzione Cat. H2 Coperture praticabili Cat. H3 Coperture speciali (impianti, eliporti, altri) da valutarsi caso per caso	0,50	1,20 ategoria di ap —	1,00 partenenza —

^{*} non comprende le azioni orizzontali eventualmente esercitate dai materiali immagazzinati

Verifiche allo SLU

Pietro Croce - Resistenza al fuoco delle strutture

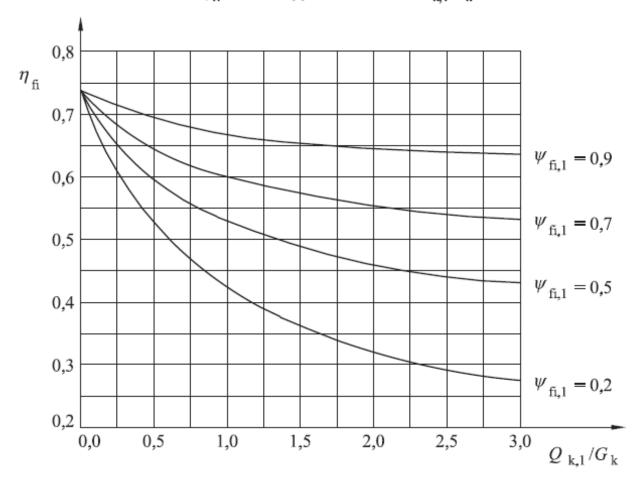
^{**} per i soli parapetti o partizioni nelle zone pedonali. Le azioni sulle barriere esercitate dagli automezzi dovranno essere valutate caso per caso

Verifiche per azioni eccezionali (nel caso specifico: incendio)

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Tabella 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ 0j	Ψıj	Ψ 2j
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0,7	0,5	0,3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.1.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.1.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0


Fattore di riduzione del carico

$$\eta_{\text{fi}} = \frac{\gamma_{\text{GA}} G_{\text{k}} + \psi_{2.1} Q_{\text{k.1}}}{\gamma_{\text{G}} G_{\text{k}} + \gamma_{\text{Q.1}} Q_{\text{k.1}}}$$

$$\gamma_{\mathsf{GA}} = 1.0$$

Verifiche per azioni eccezionali (nel caso specifico: incendio)

Variazione del fattore di riduzione η_{fi} con il rapporto di carico $Q_{k,1}/G_k$

$$\eta_{\text{fi}} = \frac{\gamma_{\text{GA}} G_{\text{k}} + \psi_{2.1} Q_{\text{k.1}}}{\gamma_{\text{G}} G_{\text{k}} + \gamma_{\text{Q.1}} Q_{\text{k.1}}}$$

$$\gamma_{GA}$$
=1,0

Strategie di progettazione «a caldo» degli Eurocodici

Only load bearing function **R** of steel structures is covered by the design rules of the fire part of Eurocodes

Load bearing function of a structure is satisfied only if during the relevant duration of fire exposure **t**

$$\mathsf{E}_{\mathsf{fi,d,t}} \leq \mathsf{R}_{\mathsf{fi,d,t}}$$

where

 $\mathbf{E}_{\text{fi.d.t}}$: design effect of actions (Eurocodes 1990 and 1991)

 $\mathbf{R}_{\text{fi.d.t}}$: design resistance of the structure at time \mathbf{t}

Strategie di progettazione «a caldo» degli Eurocodici

Azioni termiche

$$\dot{h}_{\text{net}} = \dot{h}_{\text{net,c}} + \dot{h}_{\text{net,r}}$$
 [W/m²]

$$\dot{h}_{\text{net,c}} = \alpha_{\text{c}} \cdot (\Theta_{\text{g}} - \Theta_{\text{m}})$$
 [W/m²] (3.2)

dove:

 $\alpha_{\rm c}$ è il coefficiente di trasferimento di calore per convezione [W/m²K];

 Θ_{q} è la temperatura del gas in vicinanza dell'elemento esposto al fuoco [°C];

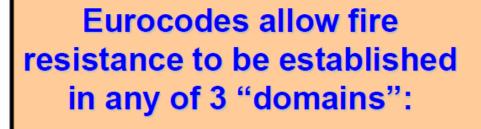
 $\Theta_{\rm m}$ è la temperatura superficiale dell'elemento [°C].

Si raccomanda che sulla faccia non esposta di elementi di separazione il flusso termico netto sia determinato utilizzando l'equazione (3.1) con α_c = 4 [W/m²K]. Si raccomanda che il coefficiente di trasferimento di calore per convezione sia assunto come α_c = 9 [W/m²K], quando si considerano compresi in esso gli effetti del trasferimento di calore per irraggiamento.

Strategie di progettazione «a caldo» degli Eurocodici Azioni termiche

$$\dot{h}_{\text{net}} = \dot{h}_{\text{net,c}} + \dot{h}_{\text{net,r}}$$
 [W/m²]

La componente netta del flusso termico per irraggiamento per unità di superficie è determinata nella forma:


$$\dot{h}_{\text{net,r}} = \Phi \cdot \varepsilon_{\text{m}} \cdot \varepsilon_{\text{f}} \cdot \sigma \cdot [(\Theta_{\text{r}} + 273)^4 - (\Theta_{\text{m}} + 273)^4] \qquad [\text{W/m}^2]$$
dove:

- Φ è il fattore di configurazione;
- $\varepsilon_{\rm m}$ è l'emissività superficiale dell'elemento;
- è l'emissività del fuoco;
- σ è la costante di Stephan Boltzmann (5,67 · 10⁻⁸ W/m²K⁴);
- ⊘_r è la temperatura effettiva di irraggiamento della zona incendiata [°C];
- \mathcal{O}_{m} è la temperatura superficiale dell'elemento [°C].

Se non fornito nelle parti da EN 1992 a EN 1966 o EN1999 nelle sezioni dedicate alle proprietà di progettazione antincendio dei materiali, si può adottare $\varepsilon_{\rm m}$ = 0,8. L'emissività del fuoco è assunta in generale pari a $\varepsilon_{\rm f}$ = 1,0.

In generale si adotta un fattore di configurazione sia assunto pari a Φ = 1,0. Un valore inferiore è consentito per includere nell'analisi effetti dovuti a schermatura o posizione.

Strategie di progettazione «a caldo» degli Eurocodici

Time:

$$t_{\text{fi.d}} \ge t_{\text{fi.requ}}$$

Load resistance:

$$R_{\text{fi.d.t}} \ge E_{\text{fi.d.t}}$$

Temperature:

$$\theta_{cr.d} \ge \theta_d$$

 Usually only <u>directly</u> feasible using advanced calculation models.

- Feasible by hand calculation. Find reduced resistance at required resistance time.
- Most usual simple EC3 method. Find critical temperature for loading, compare with design temperature.

t_{fi.d}: design fire resistance time

t_{fi.requ}: required fire resistance time

Resistenze di progetto - Calcestruzzo (EN 1992-1-2)

SLU (a T=20° C)

Per il calcestruzzo la resistenza di calcolo a compressione, f_{cd}, é:

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_{c} \tag{4.1.4}$$

dove:

 α_{cc} è il coefficiente riduttivo per le resistenze di lunga durata;

 $\gamma_{\rm C}$ è il coefficiente parziale di sicurezza relativo al calcestruzzo;

f_{ck} è la resistenza caratteristica cilindrica a compressione del calcestruzzo a 28 giorni.

Il coefficiente $\gamma_{\rm C}$ è pari ad 1,5.

Il coefficiente α_{cc} è pari a 0,85.

La resistenza di calcolo dell'acciaio f_{yd} è riferita alla tensione di snervamento ed il suo valore è dato da:

$$f_{vd} = f_{vk} / \gamma_S \tag{4.1.6}$$

dove:

γ_s è il coefficiente parziale di sicurezza relativo all'acciaio;

 f_{yk} per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio (v. § 11.3.2), per armature da precompressione è la tensione convenzionale caratteristica di snervamento data, a seconda del tipo di prodotto, da f_{pyk} (barre), $f_{p(0,1)k}$ (fili), $f_{p(1)k}$ (trefoli e trecce); si veda in proposito la Tab. 11.3.VII.

Il coefficiente γ_S assume sempre, per tutti i tipi di acciaio, il valore 1,15.

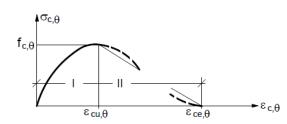
Resistenze di progetto - Calcestruzzo (EN 1992-1-2)

VERIFICHE DI RESISTENZA AL FUOCO

4.1.13 RESISTENZA AL FUOCO

Le verifiche di resistenza al fuoco potranno eseguirsi con riferimento a UNI EN 1992-1-2, utilizzando i coefficienti γ_M (v. § 4.1.4) relativi alle combinazioni eccezionali ed assumendo il coefficiente α_{cc} pari a 1,0.

4.1.4 VERIFICHE PER SITUAZIONI ECCEZIONALI


Le resistenze di calcolo dei materiali riferite ad una specifica situazione di verifica si ottengono con i seguenti coefficienti parziali di sicurezza:

- calcestruzzo e aderenza con le armature $\gamma_{\rm C} = 1.0$
- acciaio d'armatura $\gamma_S = 1.0$

RESISTENZA A COMPRESSIONE

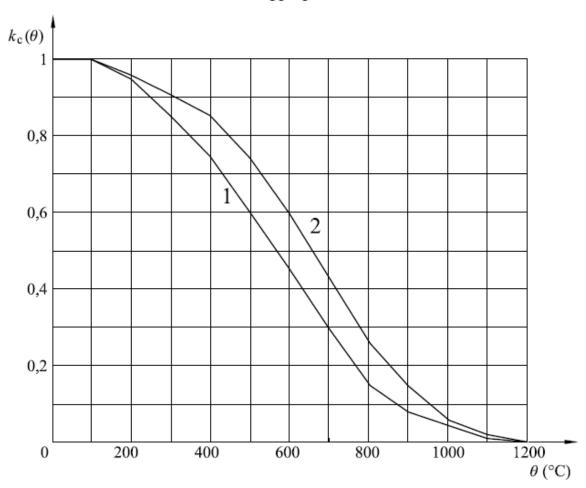
Valori dei principali parametri delle relazioni sforzi-deformazioni del calcestruzzo ordinario con aggregati silicei o calcarei a elevate temperature

Temperatura del	Aggregati silicei			Aggregati calcarei			
calcestruzzo, θ	$f_{c,\theta}/f_{ck}$	$\mathcal{E}_{\mathrm{c1},\theta}$	$\mathcal{E}_{\mathrm{cu1},\theta}$	$f_{\rm c,\theta}/f_{\rm ck}$	$\mathcal{E}_{\mathrm{cl},\theta}$	$\mathcal{E}_{\mathrm{cu1},\theta}$	
[°C]	[-]	[-]	[-]	[-]	[-]	[-]	
1	2	3	4	5	6	7	
20	1,00	0,0025	0,0200	1,00	0,0025	0,0200	
100	1,00	0,0040	0,0225	1,00	0,0040	0,0225	
200	0,95	0,0055	0,0250	0,97	0,0055	0,0250	
300	0,85	0,0070	0,0275	0,91	0,0070	0,0275	
400	0,75	0,0100	0,0300	0,85	0,0100	0,0300	
500	0,60	0,0150	0,0325	0,74	0,0150	0,0325	
600	0,45	0,0250	0,0350	0,60	0,0250	0,0350	
700	0,30	0,0250	0,0375	0,43	0,0250	0,0375	
800	0,15	0,0250	0,0400	0,27	0,0250	0,0400	
900	0,08	0,0250	0,0425	0,15	0,0250	0,0425	
1 000	0,04	0,0250	0,0450	0,06	0,0250	0,0450	
1 100	0,01	0,0250	0,0475	0,02	0,0250	0,0475	
1 200	0,00	-	-	0,00	-	-	

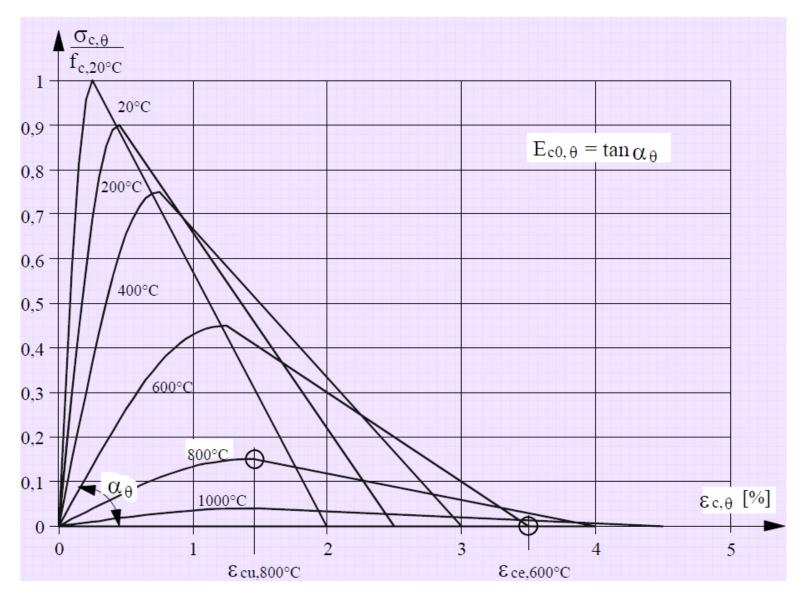
RANGE I:

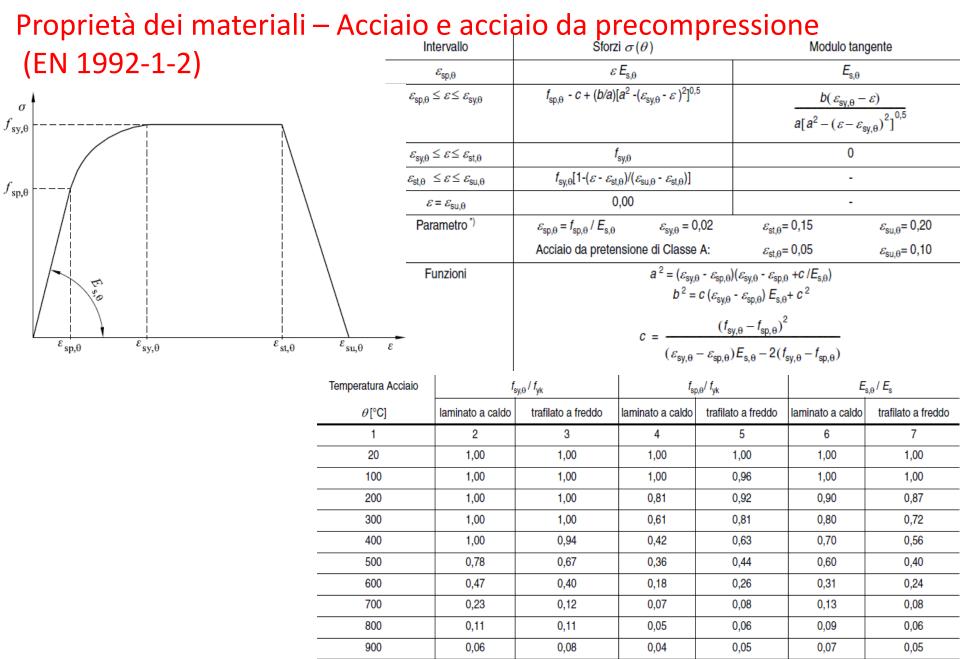
$$\sigma_{c,\theta} = f_{c,\theta} \left[3 \left(\frac{\varepsilon_{c,\theta}}{\varepsilon_{cu,\theta}} \right) \middle/ \left\{ 2 + \left(\frac{\varepsilon_{c,\theta}}{\varepsilon_{cu,\theta}} \right)^{3} \right\} \right]$$
(18)

 $k_{c,\theta} = \frac{f_{c,\theta}}{f_c}$ to be chosen according to the values of table 1


RANGE II:

For numerical purposes a descending branch should be adopted.


RESISTENZA A COMPRESSIONE IN FUNZIONE DELLA TEMPERATURA


Coefficiente $k_c(\theta)$ per la valutazione della riduzione della resistenza caratteristica (f_{ck}) calcestruzzo

- 1 Curva 1: calcestruzzo ordinario con aggregati silicei
- 2 Curva 2: calcestruzzo ordinario con aggregati calcarei

CURVE σ - ϵ IN FUNZIONE DELLA TEMPERATURA – Aggregati silicei

0.04

0.02

0,00

0.05

0,03

0,00

0.02

0,01

0,00

0.03

0,02

0,00

0.04

0.02

0,00

0.03

0.02

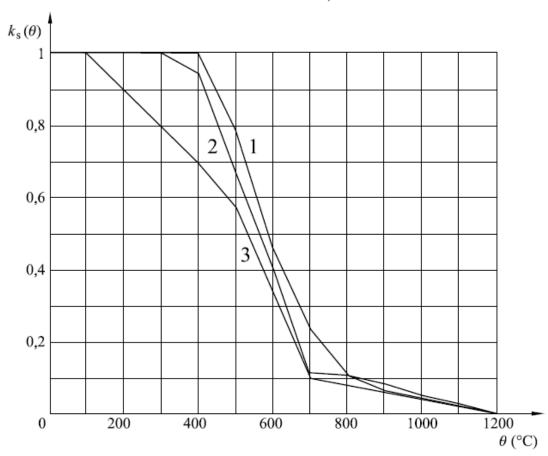
0,00

1 000

1 100

1 200

Proprietà dei materiali – Acciaio (EN 1992-1-2)

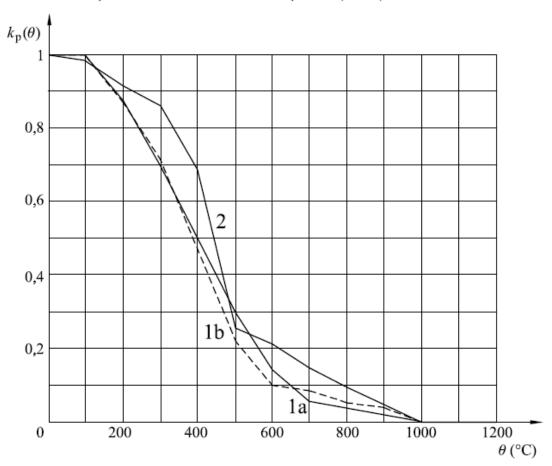

Coefficiente k_s (θ) per la valutazione della riduzione della resistenza caratteristica (f_{yk}) di armature tese e compresse (Classe N)

Legenda

Curva 1 Armatura tesa (laminata a caldo) per deformazioni $\varepsilon_{\text{s,fi}} \geq 2\%$

Curva 2 Armatura tesa (trafilata a freddo) per deformazioni $\varepsilon_{\rm s,fi} \geq 2\%$

Curva 3 Armatura compressa e tesa per deformazioni $\varepsilon_{s,fi} < 2\%$

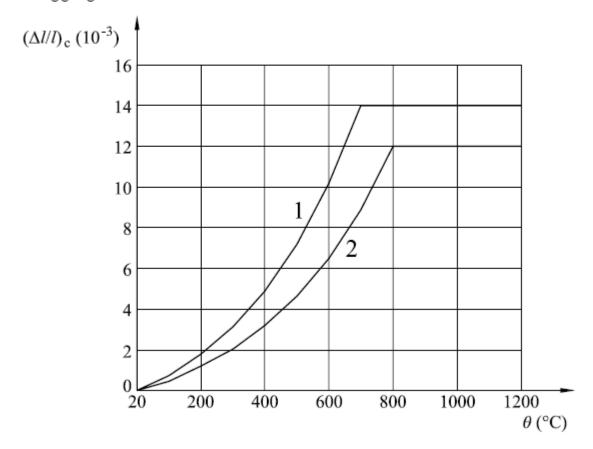

Proprietà dei materiali – Acciaio da precompressione (EN 1992-1-2)

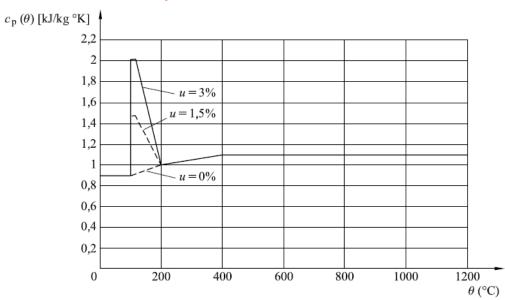
Coefficiente $k_p(\theta)$ per la valutazione della riduzione della resistenza caratteristica (βf_{pk}) dell'acciaio da pretensione

Legenda

Curva 1a Acciaio da pretensione trafilato a freddo (fili e trefoli) Classe A
Curva 1b Acciaio da pretensione trafilato a freddo (fili e trefoli) Classe B

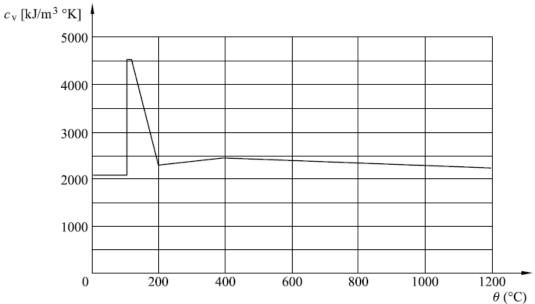
Curva 2 Acciaio da pretensione bonificato e temperato (barre)




Dilatazione termica totale del calcestruzzo

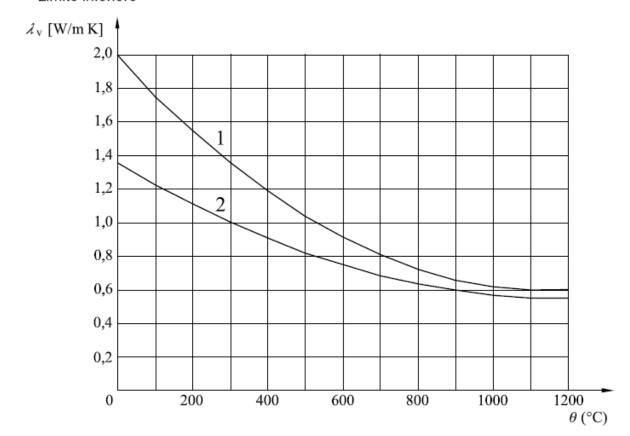
Legenda

1 Curva 1: aggregati silicei


2 Curva 2: aggregati calcarei

a) Calore specifico, $c_p(\theta)$ funzione della temperatura per 3 diversi contenuti di umidità u, pari a 0, 1,5 e 3,0% in peso per calcestruzzo siliceo

b)

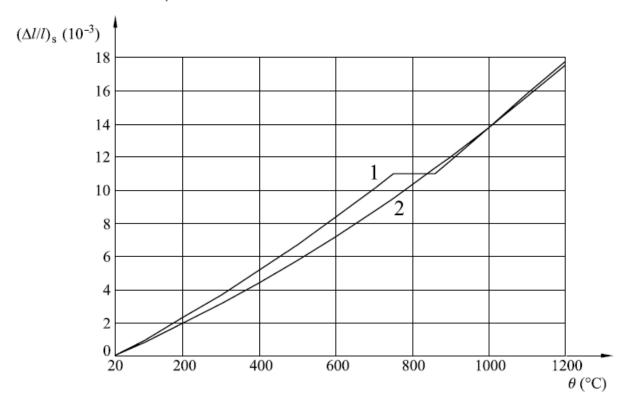


Calore specifico volumetrico, $c_{\rm v}\left(\theta\right)$ funzione della temperatura per il contenuto di umidità u, pari al 3,0% in peso per calcestruzzo siliceo con massa volumica 2 300 kg/m³

Conduttività termica del calcestruzzo

Legenda

- 1 Limite superiore
- 2 Limite inferiore



Proprietà dei materiali – Acciaio (EN 1992-1-2)

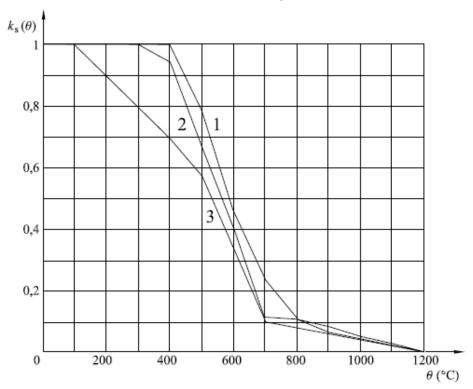
Dilatazione termica totale dell'acciaio

Legenda

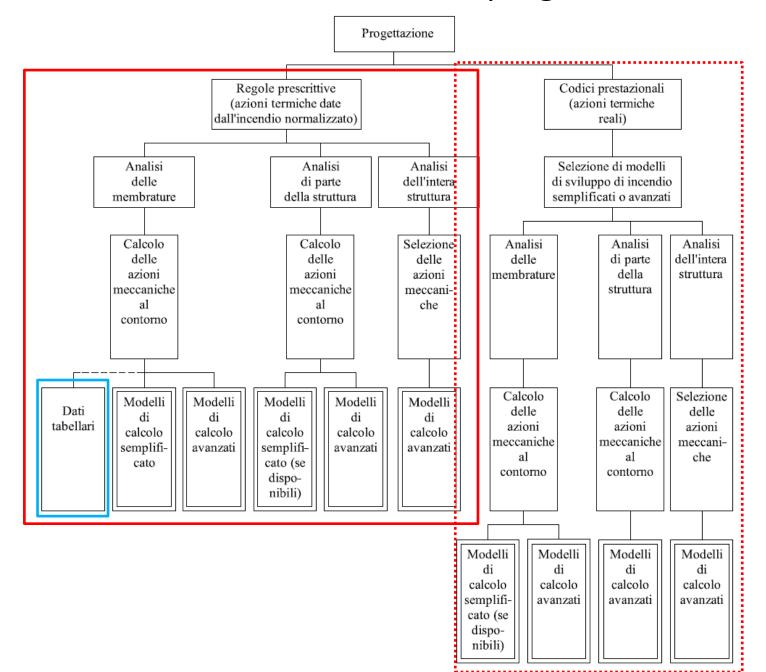
- 1 Curva 1: acciaio di armatura
- 2 Curva 2: acciaio da pretensione

Proprietà dei materiali – Acciaio (EN 1992-1-2)

temperatura critica dell'armatura: È la temperatura dell'armatura alla quale ci si attende il collasso della membratura in caso di incendio (*Criterio R*) per un dato livello di sollecitazione dell'acciaio.


Coefficiente $k_s(\theta)$ per la valutazione della riduzione della resistenza caratteristica (f_{yk}) di armature tese e compresse (Classe N)

Legenda


Curva 1 Armatura tesa (laminata a caldo) per deformazioni $\varepsilon_{s,fi} \ge 2\%$

Curva 2 Armatura tesa (trafilata a freddo) per deformazioni $\varepsilon_{s,fi} \ge 2\%$

Curva 3 Armatura compressa e tesa per deformazioni $\varepsilon_{\mathrm{a,fi}} < 2\%$

EN 1991-1-2 – Procedimenti di progettazione

EN 1992-1-2 – Procedimenti di progettazione con dati tabellari – $(\eta_{fi}$ =0,7) Tabelle dell'allegato D al DM 16/2/2007

D.5.1 La tabella seguente riporta i valori minimi (mm) dello spessore totale H di solette e solai, della distanza a dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito R per le classi indicate.

Classe	30	60	90	120	180	240
Solette piene con armatura monodirezionale	H = 80 / a = 10	120/ 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai misti di lamiera di acciaio con riempimento di calcestruzzo (1)	H = 80 / a = 10	120 / 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai a travetti con alleggerimento (2)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75
Solai a lastra con alleggerimento (3)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di H e a ne devono tenere conto nella seguente maniera: 10 mm di intonaco normale (definizione in D.4.1) equivale ad 10 mm di calcestruzzo; 10 mm di intonaco protettivo antincendio (definizione in D.4.1) equivale a 20 mm di calcestruzzo. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

- (1) In caso di lamiera grecata H rappresenta lo spessore medio della soletta. Il valore di a non comprende lo spessore della lamiera. La lamiera ha unicamente funzione di cassero. In caso contrario la lamiera va protetta secondo quanto indicato in D.7.1
- (2) Deve essere sempre presente uno strato di intonaco normale di spessore non inferiore a 20 mm ovvero uno strato di intonaco isolante di spessore non inferiore a 10 mm.
- (3) In caso di alleggerimento in polistirene o materiali affini prevedere opportuni sfoghi delle sovrapressioni.

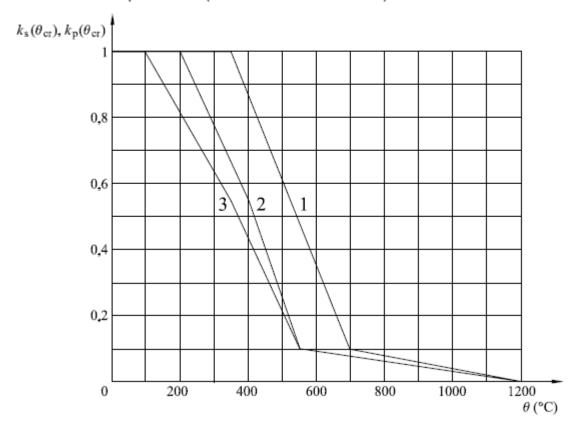
D.5.2 Per garantire i requisiti di tenuta e isolamento i solai di cui alla tabella D.5.1 devono presentare uno strato pieno di materiale isolante, non combustibile e con conducibilità termica non superiore a quella del calcestruzzo, di cui almeno una parte in calcestruzzo armato. La tabella seguente riporta i valori minimi (cm) dello spessore h dello strato di materiale isolante e della parte d di c.a., sufficienti a garantire i requisiti El per le classi indicate.

Classe	30	60	90	120	180	240
Tutte le tipologie	h = 60 / d = 40	60 / 40	100 / 50	100 / 50	150 / 60	150 / 60

In presenza di intonaco i valori di h e di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. In ogni caso a non deve mai essere inferiore a 40 mm.

In presenza di strati superiori di materiali di finitura incombustibile (massetto, malta di allettamento, pavimentazione, etc.) i valori di h ne possono tener conto

EN 1992-1-2 – Procedimenti di progettazione con dati tabellari – $(\eta_{fi}=0,7)$ EN 1992-1-2


Curve di riferimento per la temperatura critica dell'acciaio armatura e da pretensione $\theta_{\rm cr}$ corrispondenti al fattore di riduzione $k_{\rm s}$ ($\theta_{\rm cr}$) = $\sigma_{\rm s,fi}/f_{\rm yk}$ (20 °C) o $k_{\rm p}$ ($\theta_{\rm cr}$) = $\sigma_{\rm s,fi}/f_{\rm pk}$ (20 °C)

Legenda

Curva 1 Acciaio di armatura

Curva 2 Acciaio da pretensione (barre: EN 10138-4)

Curva 3 Acciaio da pretensione (fili e trefoli: EN 10138-2 e -3)

EN 1992-1-2 – Procedimenti di progettazione con dati tabellari Tabelle dell'allegato D al DM 16/2/2007 – Prospetti dell'EN1992-1-2

D.6.1 La tabella seguente riporta i valori minimi (mm) della larghezza b della sezione, della distanza a dall'asse delle armature alla superficie esposta e della larghezza d'anima b_w di travi con sezione a larghezza variabile sufficienti a garantire il requisito R per le classi indicate di travi semplicemente appoggiate. Per travi con sezione a larghezza variabile b è la larghezza in corrispondenza della linea media delle armature tese.

Classe	Combinazioni pos	b _w			
30	b = 80 / a = 25	120 / 20	160 / 15	200 / 15	80
60	b = 120 / a = 40	160 / 35	200 / 30	300 / 25	100
90	b = 150 / a = 55	200 / 45	300 / 40	400 / 35	100
120	b = 200 / a = 65	240 / 60	300 / 55	500 / 50	120
180	b = 240 / a = 80	300 / 70	400 / 65	600 / 60	140
240	b = 280 / a = 90	350 / 80	500 / 75	700 / 70	160

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di b e a ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

TRAVI

prospetto 5.5 Dimensioni minime e distanze dell'asse per travi semplicemente appoggiate di calcestruzzo armato e calcestruzzo armato precompresso

Resistenza al fuoco	Dimensioni minime (mm)							
normalizzata	Combinazioni possi					Spessore dell'anima b _w		
	media dell'asse	e b _{min} è lo s _l	oessore dell	a trave	Classe WA	Classe WB	Classe WC	
1	2	3	4	5	6	7	8	
R30	b _{min} = 80	120	160	200	80	80	80	
	a = 25	20	15 ^{*)}	15 ^{*)}				
R60	b _{min} = 120	160	200	300	100	80	100	
	a = 40	35	30	25				
R90	b _{min} = 150	200	300	400	110	100	100	
	a= 55	45	40	35				
R120	b _{min} = 200	240	300	500	130	120	120	
	a = 65	60	55	50				
R180	b _{min} = 240	300	400	600	150	150	140	
	a= 80	70	65	60				
R240	b _{min} = 280	350	500	700	170	170	160	
	a= 90	80	75	70				
a = a ± 10 mm (vodere nota sotto)					I	I	<u> </u>	

 $a_{\rm sd} = a + 10 \, \text{mm} \, \text{(vedere nota sollo)}$

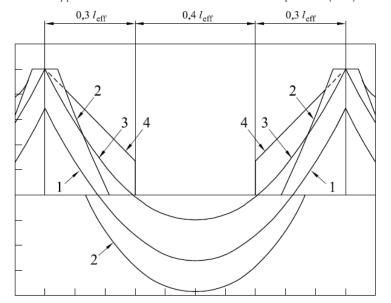
Per travi di calcestruzzo armato precompresso si raccomanda di porre attenzione all'incremento della distanza dell'asse secondo il punto 5.2(5).

è la distanza dell'asse delle barre d'angolo (o filo o cavo) da un lato della trave, in travi con un solo strato d'armatura. Per valori di b_{min} maggiori di quelli indicati nella colonna 4 non sono richiesti incrementi per il valore a_{sri}.

Generalmente si controlla il copriferro richiesto dalla EN 1992-1-1.

EN 1992-1-2 – Procedimenti di progettazione con dati tabellari

prospetto 5.6 Dimensioni minime e distanze dell'asse per travi continue di calcestruzzo armato e calcestruzzo armato precompresso (vedere anche prospetto 5.7)


Resistenza al fuoco	Dimensioni minime (mm)						
normalizzata	Combinazioni possibili di a e b _{min} dove a è la distanza				Spessore dell'anima b _w		
	media dell'asse	e b _{min} è lo s _l	pessore dell	a trave	Classe WA	Classe WB	Classe WC
1	2 3 4			5	6	7	8
R30	b _{min} = 80	160			80	80	80
	$a = 15^{*)}$	12 ^{*)}					
R60	b _{min} = 120	200			100	80	100
	a = 25	12 ^{*)}					
R90	<i>b</i> _{min} = 150	250			110	100	100
	a = 35	25					
R120	b _{min} = 200	300	450	500	130	120	120
	a = 45	35	35	30			
R180	$b_{\min} = 240$	400	550	600	150	150	140
	a = 60	50	50	40			
R240	b _{min} = 280	500	650	700	170	170	160
	a= 75	60	60	50			
$a_{-1} = a + 10 \text{ mm (vede}$	ere nota sotto)				1		L

Per travi di calcestruzzo armato precompresso si raccomanda di porre attenzione all'incremento della distanza dell'asse secondo il punto 5.2(5).

TRAVI CONTINUE

Inviluppo dei momenti flettenti resistenti su appoggi in condizioni di incendio Legenda

- Diagramma dei momenti flettenti per le azioni in condizioni di incendio a t = 0
- 2 Linea di inviluppo dei momenti flettenti reali a cui deve resistere l'armatura a secondo la EN 1992-1-1
- 3 Diagramma dei momenti flettenti in condizioni di incendio
- 4 Linea di inviluppo dei momenti flettenti resistenti secondo l'equazione (5.11)

Pietro Croce - Resistenza al fuoco delle strutture

è la distanza dell'asse delle barre d'angolo (o filo o cavo) da un lato della trave, in travi con un solo strato d'armatura. Per valori di b_{\min} maggiori di quelli indicati nella colonna 3 non sono richiesti incrementi per il valore a_{srt} .

Generalmente si controlla il copriferro richiesto dalla EN 1992-1-1.

EN 1992-1-2 – Procedimenti di progettazione con dati tabellari Tabelle dell'allegato D al DM 16/2/2007 – Prospetti dell'EN1992-1-2

D.6.2 La tabella seguente riporta i valori minimi (mm) del lato più piccolo b di pilastri a sezione rettangolare ovvero del diametro di pilastri a sezione circolare e della distanza a dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito R per le classi indicate di pilastri esposti su uno o più lati che rispettano le seguenti limitazioni:

 lunghezza effettiva del pilastro (da nodo a nodo) ≤ 6 m (per pilastri di piani intermedi) ovvero ≤ 4,5 m (per pilastri dell'ultimo piano);

е

- area complessiva di armatura A_s ≤ 0,04 A_c area efficace della sezione trasversale del pilastro

Classe	Esposto su più lati		Esposto su un lato		
30	B = 200 / a = 30	300 / 25-	160 / 25		
60	B = 250 / a = 45	350 /40	160 / 25		
90	B = 350 / a = 50	450/40	160 / 25		
120	B = 350 / a = 60	450 / 50	180 / 35		
180	B = 450 / a = 70	-	230 / 55		
240	-	-	300 / 70		
			·		

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

Metodo A

- (1) La resistenza al fuoco di pilastri di calcestruzzo armato e calcestruzzo armato precompresso, soggetti principalmente a compressione nelle strutture controventate può essere considerata adeguata se sono applicati i valori del prospetto 5.2a unitamente alle regole seguenti.
- (2) La validità dei valori minimi della larghezza del pilastro b_{\min} e della distanza dell'asse dell'armatura longitudinale a fornita nel prospetto 5.2a è limitata come segue:
 - lunghezza efficace del pilastro (per la definizione vedere Sezione 5 della EN 1992-1-1) in situazione di incendio: $l_{0,\rm fi} \le 3$ m;
 - eccentricità del primo ordine in condizioni di incendio: $e = M_{0 \text{Ed.fi}} / N_{0 \text{Ed.fi}} \le e_{\text{max}};$
 - rapporto di armatura: $A_s < 0.04 A_c$.
- Nota 1 II valore di e_{max} , nei limiti 0,15h (o b) $\leq e_{max} \leq 0,4h$ (oppure b), da adottare in uno Stato è reperibile nell'appendice nazionale. Il valore raccomandato è 0,15h (oppure b).
- Nota 2 La lunghezza efficace di un pilastro in condizioni di incendio $I_{0,\mathrm{fl}}$ può essere assunta uguale a I_0 a temperatura ambiente in tutti i casi. Per il progetto di strutture controventate dove l'esposizione all'incendio normalizzato richiesta sia maggiore di 30 min, la lunghezza efficace $I_{0,\mathrm{fl}}$ può essere presa come 0,5 / per piani intermedi e $0,5l \leq I_{0,\mathrm{fl}} \leq 0,7l$ per l'ultimo piano, dove l è la lunghezza effettiva del pilastro (da centro a centro).
- Nota 3 L'eccentricità del primo ordine in situazione di incendio si può assumere pari a quella della progettazione a temperatura ambiente.
 - (3) Nel prospetto 5.2a è stato introdotto un grado di utilizzo in situazione di incendio, $\mu_{\rm fi}$. Questo vale per le combinazioni di carico e per la resistenza a compressione e flessione del pilastro includendo gli effetti del secondo ordine.

$$\mu_{fi} = N_{Ed,fi}/N_{Rd} \tag{5.6}$$

dove:

 $N_{\rm Ed.fi}$ è il carico assiale di progetto in situazione di incendio;

 $N_{\rm Rd}$ è la resistenza di progetto del pilastro a temperatura ambiente.

 $N_{\rm Rd}$ è calcolato secondo la EN 1992-1-1 con $\gamma_{\rm m}$ per il progetto a temperatura ambiente, compreso gli effetti di secondo ordine e un'eccentricità iniziale uguale all'eccentricità di $N_{\rm Ed.fi}$.

Nota 1 Il fattore di riduzione $\eta_{\rm fl}$ si può utilizzare al posto di $\mu_{\rm fl}$ per il livello di carico di progetto (vedere punto 2.4.2) come una semplificazione a favore di sicurezza, visto che $\eta_{\rm fl}$ prevede che sostenga l'intero carico previsto per il progetto a temperatura ambiente.

prospetto 5.2a Dimensioni minime del pilastro e distanze dell'asse per pilastri con sezione rettangolare o circolare

Resistenza al fuoco normalizzata	Dimensioni minime (millimetri) Larghezza del pilastro b_{\min} / distanza dell'asse a delle barre principali				
	Pilastro esposto su più lati		Esposto su un lato		
	$\mu_{\rm fi}$ = 0,2	$\mu_{fi} = 0.5$	$\mu_{\rm fi} = 0.7$	$\mu_{\rm fi} = 0.7$	
1	2	3	4	5	
R30	200/25	200/25	200/32	155/25	
			300/27		
R60	200/25	200/36	250/46	155/25	
		300/31	350/40		
R90	200/31	300/45	350/53	155/25	
	300/25	400/38	450/40**)		
R120	250/40	350/45**)	350/57**)	175/35	
	350/35	450/40**)	450/51 ^{**)}		
R180	350/45**)	350/63**)	450/70**)	230/55	
R240	350/61**)	450/75 ^{**)}		295/70	

(4) Altri valori per dati tabellari possono essere valutati utilizzando l'equazi $R = 120 \left[(R_{nfi} + R_a + R_I + R_b + R_n)/120 \right]^{1.8}$

$$R_{\eta fi} = 83 \left[1,00 - \mu_{fi} \frac{(1+\omega)}{(0,85/\alpha_{cc}) + \omega} \right]$$

dove:

$$R_a = 1,60 (a - 30)$$

$$R_1 = 9,60 (5 - I_{0.fi})$$

$$R_{\rm b} = 0.09 \, b'$$

$$R_n = 0$$
 per $n = 4$ (solo barre d'angolo)
= 12 per $n > 4$

a è la distanza dell'asse delle barre longitudinali d'acciaio (millimetri);
$$25~\text{mm} \le a \le 80~\text{mm};$$

$$I_{0,\mathrm{fi}}$$
 è la lunghezza efficace del pilastro in situazione di incendio; 2 m $\leq I_{0,\mathrm{fi}} \leq$ 6 m; i valori corrispondenti a $I_{0,\mathrm{fi}} =$ 2 m danno risultati sicuri per pilastri con $I_{0,\mathrm{fi}} <$ 2 m;

$$b' = 2A_c / (b + h)$$
 per sezioni trasversali rettangolari o il diametro per le sezioni trasversali circolari;

200 mm
$$\leq$$
 b $' \leq$ 450 mm; $h \leq$ 1,5 *b*.

 ω è il rapporto meccanico di armatura a temperatura ambiente:

$$\omega = \frac{A_{\rm s} f_{\rm yd}}{A_{\rm c} f_{\rm cd}}$$

 $\alpha_{\rm cc}$ è il coefficiente per la resistenza a compressione (vedere EN 1992-1-1).

Per l'eccentricità del primo ordine in condizioni di incendio si applicano i limiti di validità forniti nel punto 5.3.2 (2).

Pietro Croce - Resistenza al fuoco delle strutture

Metodo B

- (1) La resistenza al fuoco di pilastri di calcestruzzo armato può essere soddisfatta mediante l'utilizzo del prospetto 5.2b e delle seguenti indicazioni. Ulteriori informazioni sono fornite nell'appendice C.
- (2) Il prospetto 5.2b è valido solo per pilastri in strutture controventate dove:

il livello di carico, n, a temperatura ambiente (vedere il punto 5.8 della EN 1992-1-1) è dato da:

$$n = N_{0 \text{Ed,fi}} / [0.7(A_{c} f_{cd} + A_{s} f_{vd})]$$
 (5.8a)

l'eccentricità del primo ordine in condizioni di incendio, e, è data da:

$$e = M_{0\text{Ed fi}} / (N_{0\text{Ed fi}}) \tag{5.8b}$$

essendo $e/b \le 0.25$ con $e_{max} = 100$ mm

la snellezza del pilastro in condizioni di incendio, $\lambda_{\rm fi}$, è data da:

$$\lambda_{fi} = I_{0,fi}/I \tag{5.8c}$$

essendo $\lambda_{\rm fi} \leq$ 30, che comprende la maggioranza dei pilastri negli edifici ordinari.

dove:

 ω

 $l_{0 \text{ fi}}$ è la lunghezza efficace del pilastro in condizioni di incendio;

 è la dimensione minima della sezione per pilastri rettangolari o il diametro per pilastri circolari;

 $N_{0
m Ed,fi},\,M_{0
m Ed,fi}$ sono il carico assiale e il momento del primo ordine in condizioni di incendio:

è il rapporto meccanico di armatura a temperatura ambiente:

$$\omega = \frac{A_{\rm s} f_{\rm yd}}{A_{\rm c} f_{\rm cd}}$$

è il raggio minimo d'inerzia.

(3) Nel prospetto 5.2b sono introdotti il carico assiale e la flessione del primo ordine (vedere punto 5.8 della EN 1992-1-1) utilizzando le equazioni (5.8a) e (5.8b) per il livello di carico del pilastro a temperatura ambiente. Sono presi in considerazione anche gli effetti del second'ordine.

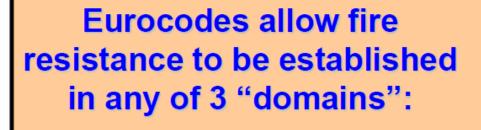
 $N_{\rm 0Ed,fi}$ si può prendere pari a 0,7 $N_{\rm 0Ed}$ ($\eta_{\rm fi}$ = 0,7, vedere punto 2.4.2) a meno che $\eta_{\rm fi}$ sia calcolato esplicitamente).

La snellezza $\lambda_{\rm fl}$ in condizioni di incendio può essere assunta uguale a λ a temperatura ambiente in tutti i casi. Per strutture controventate dove l'esposizione all'incendio normalizzato richiesta sia maggiore di 30 min, la lunghezza efficace $I_{0,\rm fl}$ deve essere presa pari a 0,5/ per i piani intermedi e a 0,5/ $\leq I_{0,\rm fl} \leq 0,7$ / per l'ultimo piano, dove / è la lunghezza effettiva del pilastro (da centro a centro).

prospetto 5.2b

Dimensioni minime del pilastro e distanze dell'asse per pilastri di calcestruzzo armato con una sezione rettangolare o circolare

Resistenza al fuoco	Rapporto	Dimension	ni minime (mm). Spessore	pilastro b _{min} /distanza dell'	asse a
normalizzata	meccanico di armatura ω	n = 0,15	n = 0,3	n = 0,5	n = 0,7
1	2	3	4	5	6
R30	0,100	150/25 ^{*)}	150/25 ^{*)}	200/30:250/25 ^{*)}	300/30:350/25 ^{*)}
	0,500	150/25 ^{*)}	150/25 ^{*)}	150/25 ^{*)}	200/30:250/25 ^{*)}
	1,000	150/25 ^{*)}	150/25 ^{*)}	150/25 ^{*)}	200/30:300/25 ^{*)}
R60	0,100	150/30:200/25 ^{*)}	200/40:300/25*)	300/40:500/25*)	500/25*)
	0,500	150/25 ^{*)}	150/35:200/25*)	250/35:350/25*)	350/40:550/25*)
	1,000	150/25 ^{*)}	150/30:200/25*)	200/40:400/25*)	300/50:600/30
R90	0,100	200/40:250/25 ^{*)}	300/40:400/25 ^{*)}	500/50:550/25*)	550/40:600/25 ^{*)}
	0,500	150/35:200/25 ^{*)}	200/45:300/25 ^{*)}	300/45:550/25*)	500/50:600/40
	1,000	200/25 ^{*)}	200/40:300/25 ^{*)}	250/40:550/25*)	500/50:600/45
R120	0,100 0,500 1,000	250/50:350/25*) 200/45:300/25*) 200/40:250/25*)	400/50:550/25*) 300/45:550/25*) 250/50:400/25*)	550/25 ^{*)} 450/50:600/25 ^{*)} 450/45:600/30	550/60:600/45 500/60:600/50 600/60
R180	0,100	400/50:500/25*)	500/60:550/25*)	550/60:600/30	(1)
	0,500	300/45:450/25*)	450/50:600/25*)	500/60:600/50	600/75
	1,000	300/35:400/25*)	450/50:550/25*)	500/60:600/45	(1)
R240	0,100	500/60:550/25*)	550/40:600/25*)	600/75	(1)
	0,500	450/45:500/25*)	550/55:600/25*)	600/70	(1)
	1,000	400/45:500/25*)	500/40:600/30	600/60	(1)


Generalmente si controlla il copriferro previsto dalla EN 1992-1-1.

(4) In pilastri dove $A_s \ge 0.02~A_c$ per una resistenza al fuoco maggiore di 90 min si richiede una regolare distribuzione delle barre lungo le pareti della sezione trasversale.

Pietro Croce - Resistenza al fuoco delle strutture

⁽¹⁾ Larghezza richiesta maggiore di 600 mm. Si richiede una valutazione particolare per l'instabilità.

Strategie di progettazione «a caldo» degli Eurocodici

Time:

$$t_{\text{fi.d}} \ge t_{\text{fi.requ}}$$

Load resistance:

$$R_{\text{fi.d.t}} \ge E_{\text{fi.d.t}}$$

Temperature:

$$\theta_{cr.d} \ge \theta_d$$

 Usually only <u>directly</u> feasible using advanced calculation models.

- Feasible by hand calculation. Find reduced resistance at required resistance time.
- Most usual simple EC3 method. Find critical temperature for loading, compare with design temperature.

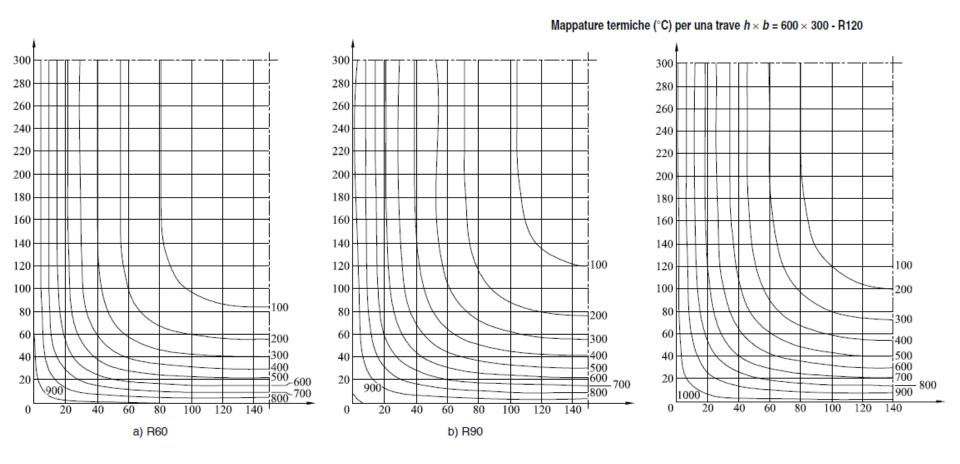
t_{fi.d}: design fire resistance time

 $t_{\text{fi.requ}}$: required fire resistance time

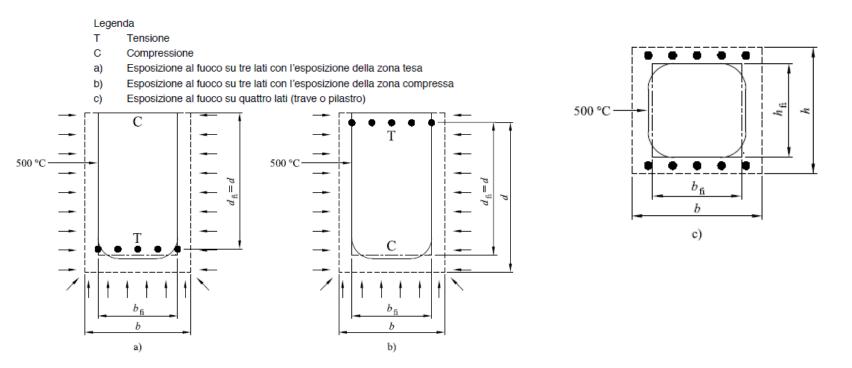
Metodo dell'isoterma 500° C

- (2) Questo metodo è valido per lo spessore minimo della sezione trasversale fornito nel prospetto B1:
 - a) per un'esposizione a incendio normalizzato in funzione della resistenza al fuoco;
 - b) per un'esposizione a incendio parametrico con un fattore di apertura O ≥ 0,14m^{1/2} (vedere appendice A della EN 1991-1-2).
- Spessore minimo della sezione trasversale in funzione della resistenza al fuoco (per esposizione a incendio normalizzato) e della densità di carico di incendio (per esposizione a incendio parametrico)
 - a) Resistenza al fuoco

Resistenza al fuoco	R 60	R 90	R 120	R 180	R 240
Spessore minimo della sezione trasversale mm	90	120	160	200	280

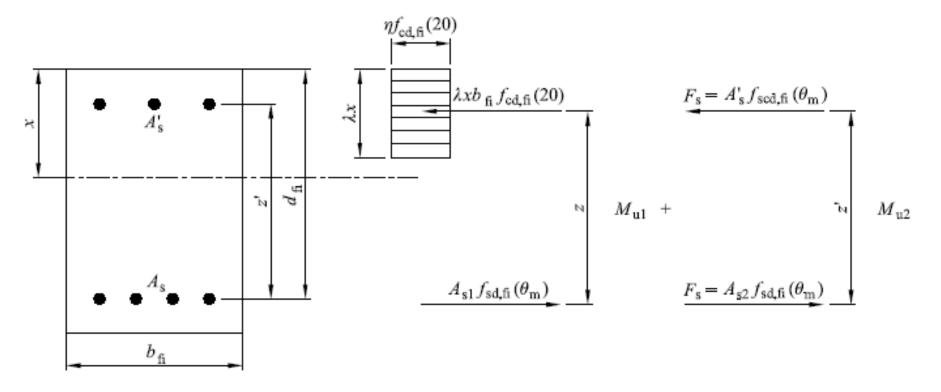

b) Densità di carico di incendio

Densità di carico di incendio MJ/m²	200	300	400	600	800
Spessore minimo della sezione trasversale mm	100	140	160	200	240

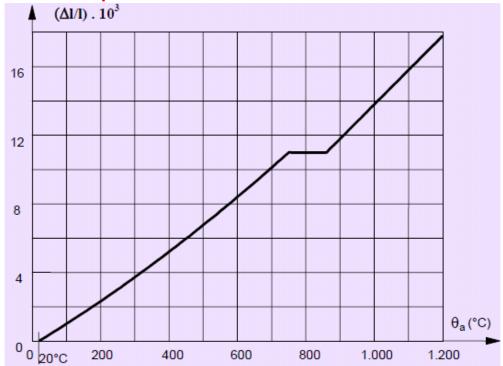

Metodo a zone

Metodo dell'isoterma 500° C

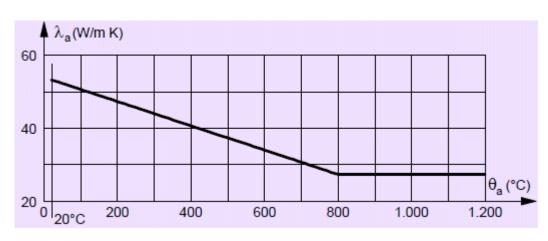
1 – Con mappatura termica o per via analitico-numerica, si determina la parte di cls resistente, scartando le zone compresse soggette a T>500 °C



Metodo dell'isoterma 500° C


2 – Si determina la temperature delle barre d'armatura, anche se a T>500 °C, e la corrispondente resistenza ridotta

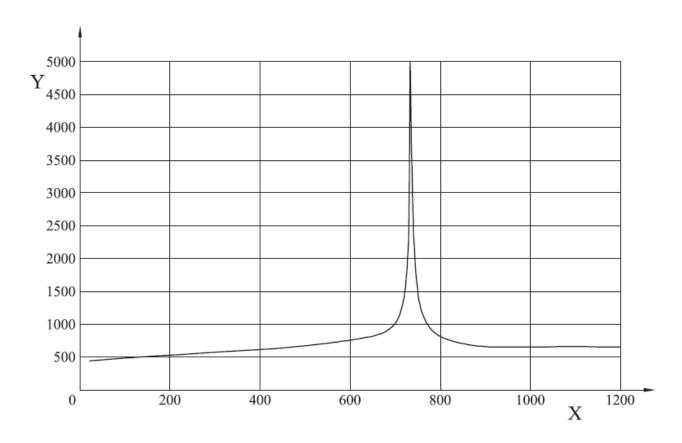
Metodo dell'isoterma 500° C



3 – Si calcola con il metodo convenzionale la resistenza a rottura della sezione, da confrontare con la resistenza

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2)

Curva Temperatura - dilatazione termica

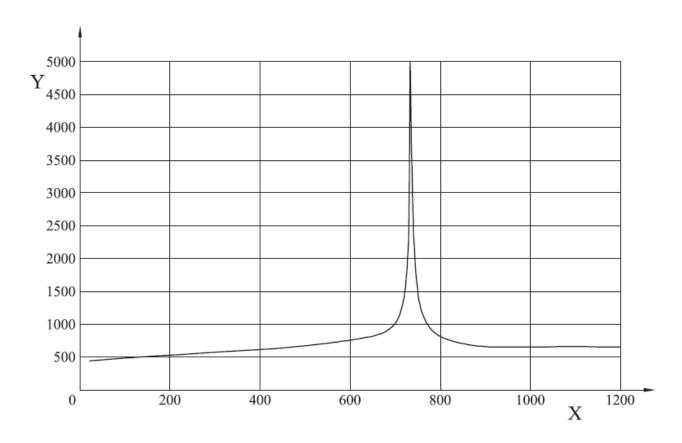

Curva Temperatura – conducibilità termica

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2)

figura 3.4 Calore specifico di un acciaio al carbonio in funzione della temperatura

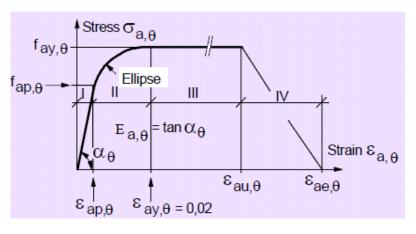
Legenda

- X Temperatura [°C]
- Y Calore specifico [J/kg K]

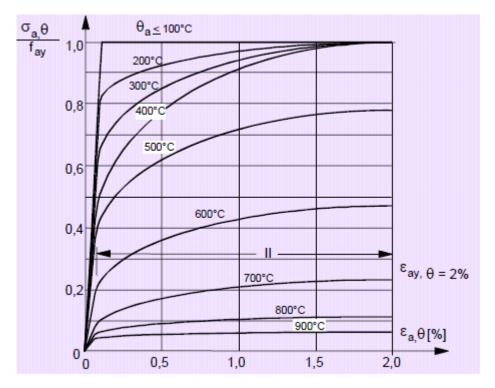

Curva Temperatura – calore specifico (a T=735 si ha cambiamento di fase)

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2)

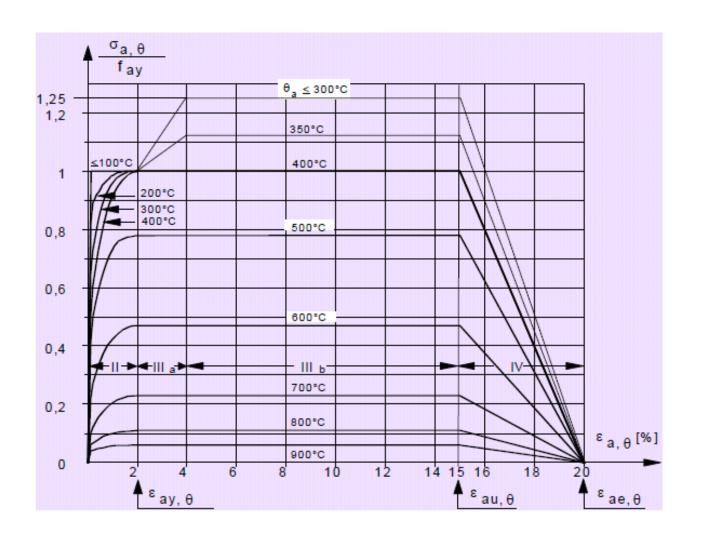
figura 3.4 Calore specifico di un acciaio al carbonio in funzione della temperatura


Legenda

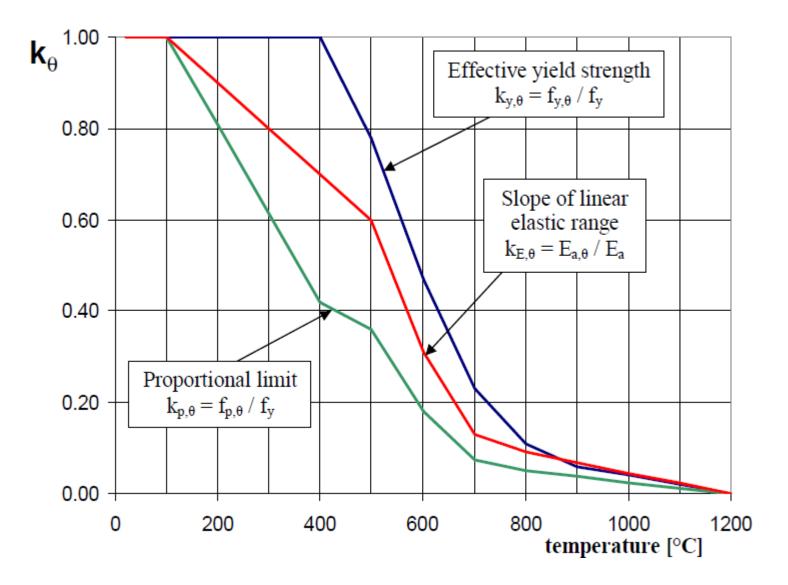
- X Temperatura [°C]
- Y Calore specifico [J/kg K]


Curva Temperatura – calore specifico (a T=735 si ha cambiamento di fase)

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Curve σ - ϵ



The stress-strain relationships are defined by three parameters:


- the slope of the linear elastic range $E_{a,\theta}$
- the proportional limit $f_{ap,\theta}$
- the effective yield strength $f_{\text{av},\theta}$

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Curve σ - ϵ

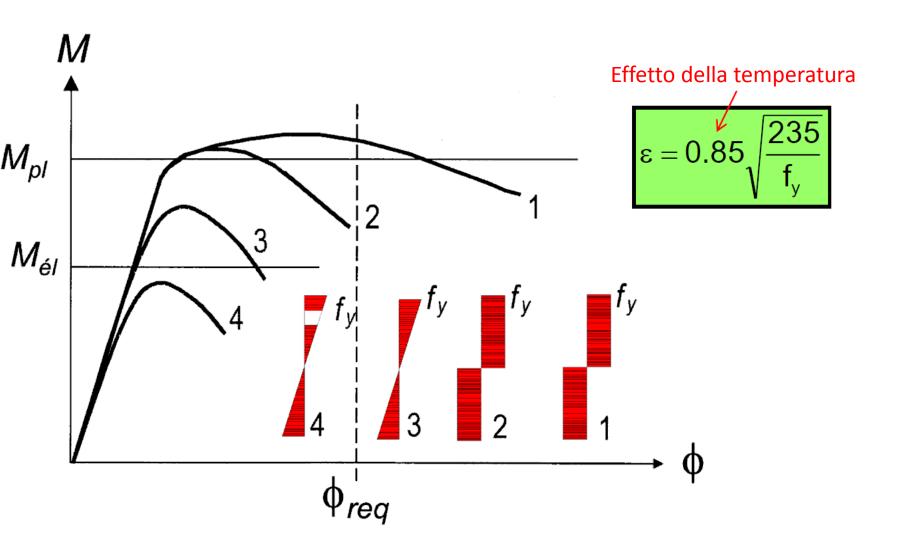
Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Fattori di riduzione delle caratteristiche meccaniche con la temperatura

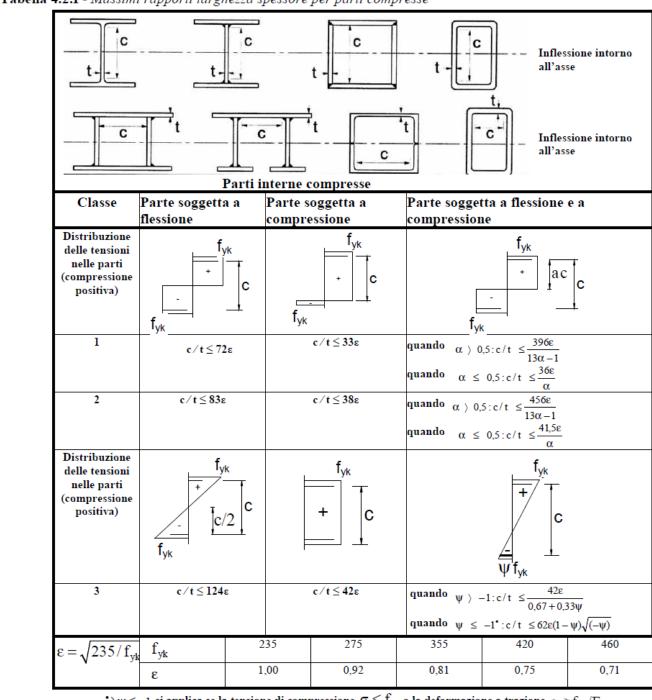
Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Resistenze di calcolo

$$R_d = \frac{R_k}{\gamma_M}$$

Tabella 4.2.V Coefficienti di sicurezza per la resistenza delle membrature e la stabilità

Resistenza delle Sezioni di Classe 1-2-3-4	$\gamma_{M0} = 1,05$
Resistenza all'instabilità delle membrature	$\gamma_{M1} = 1,05$
Resistenza all'instabilità delle membrature di ponti stradali e ferroviari	$\gamma_{M1} = 1,10$
Resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori)	$\gamma_{M2} = 1,25$


4.2.11 RESISTENZA AL FUOCO


Le verifiche di resistenza al fuoco potranno eseguirsi con riferimento a UNI EN 1993-1-2, utilizzando i coefficienti $\gamma_{\rm M}$ (v. § 4.2.6) relativi alle combinazioni eccezionali.

4.2.6 VERIFICHE PER SITUAZIONI PROGETTUALI ECCEZIONALI

Per situazioni progettuali eccezionali, il progetto dovrà dimostrare la robustezza della costruzione mediante procedure di scenari di danno per i quali i fattori parziali $\gamma_{\rm M}$ dei materiali possono essere assunti pari all'unità.

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Classificazione delle sezioni trasversali

^{*)} $\psi \le -1$ si applica se la tensione di compressione $\sigma \le f_{vk}$ o la deformazione a trazione $\epsilon_v > f_{vk} / E$

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2)
Classificazione delle sezioni trasversali

Pietro Croce - Resistenza al fuoco delle strutture

Tabella 4.2.II- Massimi rapporti larghezza spessore per parti compresse

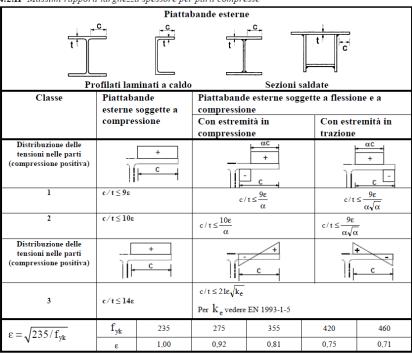
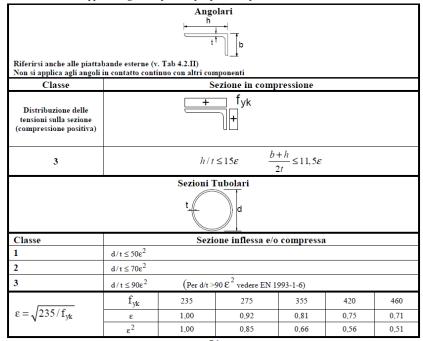



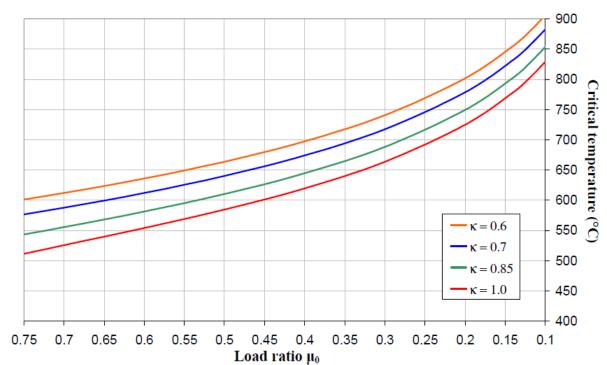
Tabella 4.2.III - Massimi rapporti larghezza spessore per parti compresse

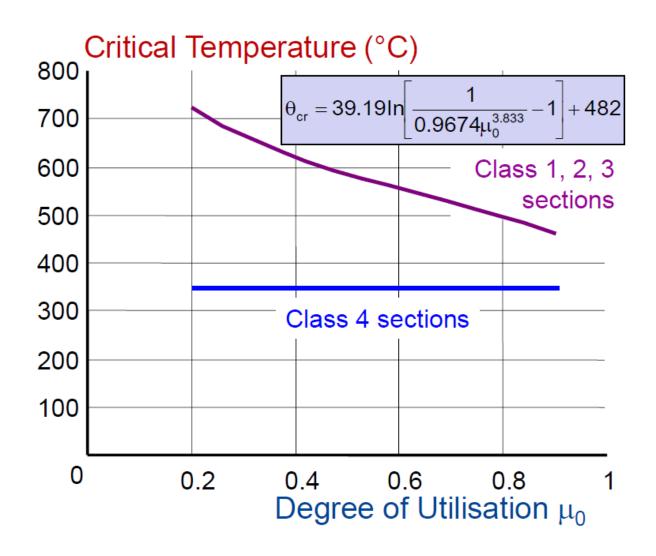
Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Classificazione delle sezioni trasversali

Pietro Croce - Resistenza al fuoco delle strutture

The critical temperature is determined by the level of the applied load (action), expressed as the degree of utilisation in fire, given by:

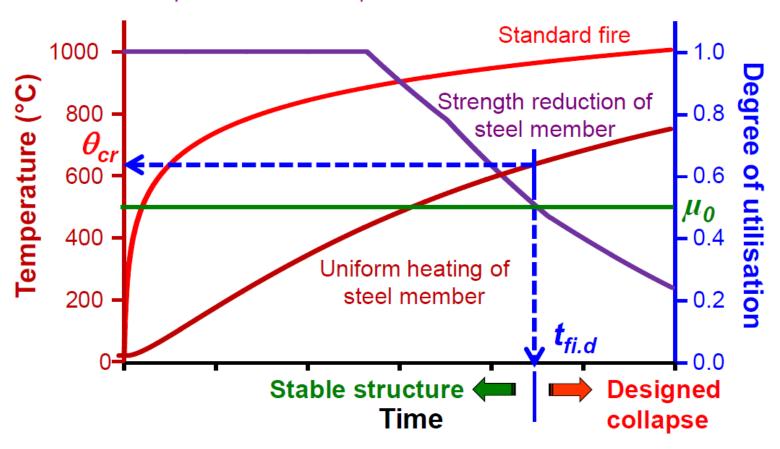
$$\mu_0 = \frac{E_{fi,d}}{R_{fi,d,t}}$$
 può essere assunto pari a $\mu_0 = \eta_{fi,t} \left(\frac{\gamma_{M,fi}}{\gamma_{M0}} \right)$


 $E_{fi,d}$: the design effect of actions in fire


 $R_{fi,d,t}$: the design resistance in fire, for time t=0 (i.e. room temperature and with $\gamma_{M,fi} = 1.0$)

The calculation of the fire resistance is based on the following assumptions:

- the method is only valid when LTB is prevented
- the temperature increase follows the standard fire curve (ISO 834, EN1364-1)
- uniform heating of the steel member. A non-uniform heat distribution is considered by the factor $\kappa = \kappa_1 \cdot \kappa_2$ (Section 3.1)
- steel grades according to EN 10025 parts 1 to 6 (S235, S355, S460) [3]
- for non protected members the shadow effect is taken into account through $(A_m/V)_{sh}$ that is equal to $0.9 \cdot (A_m/V)_b$ for I-sections and $1.0 \cdot (A_m/V)_b$ for all other cases, with $(A_m/V)_b$ as the boxed section factor (see section 5.
- for member analysis, the effects of thermal expansion of the member may be neglected


- κ_1 for a non-uniform temperature distribution across a cross-section :
 - o for a beam exposed on all four sides : κ_1 =1.0
 - o for an unprotected beam exposed on three sides, with a composite or concrete slab on side four : κ_1 =0.70
 - o for a protected beam exposed on three sides, with a composite or concrete slab on side four : κ_1 =0.85
 - κ₂ for a non-uniform temperature along a beam:
 - o at the supports of a statically indeterminate beam : κ_2 =0.85
 - o in all other cases : κ_2 =1.0

Critical temperature of steel members

Basic assumption: uniform temperature of steel member

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Coefficienti di sezione per acciaio nudo incluso l'effetto ombra

5.1 Section factor for unprotected steel members

Section factor including shadow effect for I-sections: $\left[\frac{A_m}{V}\right]_{sh} = 0.9 \cdot \left[\frac{A_m}{V}\right]_b$

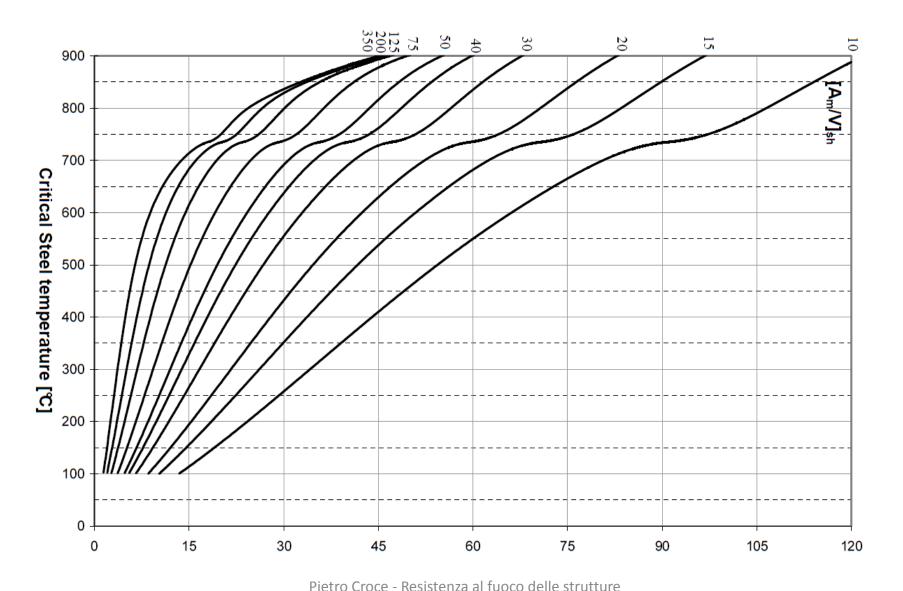
with
$$\left[\frac{A_m}{V}\right]_b = \left[\frac{box \, surface \, area \, per \, unit \, length}{volume \, of \, the \, member \, per \, unit \, length}\right]$$

Figure 5-1: Section factor for I-sections

For any sections else then I-sections, the section factor is to be taken as $\left[\frac{A_m}{V}\right]_{sh} = 1.0 \cdot \left[\frac{A_m}{V}\right]_b$

Figure 5-2: Approximated section factor for different shapes

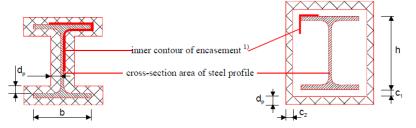
Description	$[\mathrm{A_m/V}]_{\mathrm{sh}}$
Flat bar	exposed to fire on all sides : $\approx 2/t$ exposed to fire on one sides : $\approx 1/t$
Open section with uniform thickness	exposed to fire on all sides : ≈ 2/t (the calculation of the boxed value would give more accurate value)
Hollow section with uniform thickness	exposed to fire from outside : $\approx 1/t$ (for width $>> t$ and the assumption of no radiation between the internal surfaces)
Solid section d	exposed to fire on all sides : = 4/d


		<u> </u>	A K
	HE	> [←	→ [←
H	HE 100 AA	163	221
L	HE 100 A	124	167
L	HE 100 B HE 100 M	104 59	139
ıh	HE 120 AA	164	77 222
П	HE 120 A	123	167
П	HE 120 B HE 120 M	95 55	127
┢	HE 140 AA	155 116	210
	HE 140 A	116	157 117
	HE 140 B	88 52	117 68
r	HE 140 M HE 160 AA	135	183
	HE 160 A	108	145
	HE 160 B	79 49	106
r	HE 160 M HE 180 AA	49 127	64 171
	HE 180 A	104	140
	HE 180 B HE 180 M	75 47	99 61
r	HE 200 AA	47 117	158 131
	HE 200 A	97	131
	HE 200 B HE 200 M	69 44	92 59
r	HE 220 AA	110	149 121
	HE 220 A	89	121
	HE 220 B HE 220 M	65 42	87 56
r	HE 240 AA	103	139 110
	HE 240 A HE 240 B	82 61	110 82
	HE 240 B HE 240 M	35	47
┢	HE 260 AA	97	131
	HE 260 A HE 260 B	79 59	105 79
	HE 260 B HE 260 M	35	46
Γ	HE 280 AA	94	46 125
	HE 280 A HE 280 B	76 58	102 77
L	HE 280 M	34	45
Τ	HE 300 AA HE 300 A	87 70	118
Ш	HE 300 B	70 54	95 72
L	HE 300 M	30	39
	HE 320 AA HE 320 A	86 67	114 88
Ί.	HE 320 B	52	69
L	HE 320 M HE 340 AA	30	39
	HE 340 AA HE 340 A	85 65	111 85
	HE 340 B	51	68
L	HE 340 M HE 360 AA	31	39
	HE 360 AA HE 360 A	83 63	108 82
	HE 360 B	50	66
ŀ	HE 360 M	31	40
	HE 400 AA HE 400 A	81 61	104 78
	HE 400 B	50	64
ŀ	HE 400 M HE 450 AA	32	41 103
	HE 450 AA	82 59	75
	HE 450 B	50	75 62 42
ŀ	HE 450 M HE 500 AA	34 82	42
	HE 500 AA	59	102 72
	HE 500 B	49	60
H	HE 500 M HE 550 AA	35 79	43 97
П	HE 550 A	59	97 71
	HE 550 B	50	60
H	HE 550 M HE 600 AA	37 79	45 95
П	HE 600 A	59	71
П	HE 600 B	50	60
١,	HE 600 M HE 600 x 337	38 33	46 40
L	HE 600 x 399	29	34

[A _m / V] _{sh} [m ⁻¹]	[/	4 _m /	V] _{sh}	[m	1
---	----	-------------------------	------------------	----	---

	411111111	AK
	→ ←	→ ←
IPE		
IPE 80 A	285	350
IPE 80	243	297
IPE A 100	257	314
IPE 100	222	270
IPE A 120	244	296
IPE 120	207	251
IPE A 140	234	283
IPE 140 IPE A 160	194 221	266
IPE 160	180	217
IPE A 180	204	247
IPE 180	169	203
IPE O 180	151	182
IPE A 200	189	228
IPE 200	158	190
IPE O 200 IPE A 220	142 174	171 208
IPE 220	149	178
IPE O 220	134	161
IPE A 240	160	193
IPE 240	138	166
IPE O 240	125	150
IPE A 270	154	185
IPE 270 IPE O 270	132 114	158 137
IPE A 300	144	173
IPE 300	125	150
IPE O 300	109	131
IPE A 330	134	160
IPE 330	118	141
IPE O 330	103 124	123 149
IPE 360	110	131
IPE O 360	96	114
IPE A 400	120	142
IPE 400	104	123
IPE O 400	93	110
IPE A 450	114	134
IPE 450 IPE O 450	99 85	117 99
IPE 0 450	106	124
IPE 500	94	109
IPE O 500	80	94
IPE A 550	100	116
IPE 550	87	102
IPE 0 550	77	88
IPE A 600 IPE 600	93 82	107 95
IPE 000	66	77
750 x 137	91	104
750 x 147	85	98
7ED v 472	73	84
750 x 173 750 x 196	65	75

Pietro Croce - Resistenza al fuoco delle strutture


Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Nomogramma per la determinazione della resistenza al fuoco Acciaio nudo

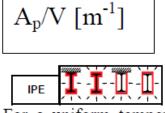
Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Coefficienti di sezione per acciaio protetto

6.1 Section factor for protected steel members

Section factor :
$$\frac{A_p}{V} = \frac{\text{inner contour of encasement}}{\text{steel cross section area}}$$

Description		A_p/V
Contour encasement of	Hollow encasement 1)	
uniform thickness	of uniform thickness	Contour encasement:
		steel perimeter steel cross-section area Hollow encasement ¹⁾ : 2(b+h) steel cross-section area
Contour encasement of uniform	Hollow encasement 1) of uniform	
thickness, exposed to fire on three sides	thickness, exposed to fire on three sides	Contour encasement 1):
		steel perimeter - b steel cross-section area
	h	Hollow encasement:
	annuditanna 🗸 🗸	(2h+b)
L b L	↓ c₁	steel cross-section area
 	C ₂	

The clearance dimensions c₁ and c₂ should normally not exceed h/4


d: insulation (with thickness d_p)

steel cross-section
inner contour A_p

Figure 6-1: Approximated section factor for different shapes

Description	A_p/V
Flat bar	exposed to fire on all sides : ≈ 2/t exposed to fire on one sides : ≈ 1/t
Open section with uniform thickness	exposed to fire on all sides : $\approx 2/t$
Hollow section with uniform thickness	exposed to fire from outside : $\approx 1/t$ (for width >> t and the assumption of no radiation between the internal surfaces)
Solid section d	exposed to fire on all sides : $= 4/d$

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Coefficienti di sezione per acciaio protetto

For a uniform temperature distribution in a cross-section, the temperature increase $\Delta\Theta_{a,t}$ of an insulated steel member during a time interval Δ_t is given by:

$$\Delta\Theta_{a,t} = \frac{A_p}{V} \cdot \frac{\lambda_p}{d_p} \cdot \frac{1}{1 + \phi/3} \cdot \left[\frac{\left(\Theta_{g,t} - \Theta_{a,t}\right)}{c_a \cdot \rho_a} \cdot \Delta_t \right] - \left(e^{\phi/10} - 1 \right) \cdot \Delta\Theta_{g,t} \quad ; \quad \text{With} \quad \phi = \frac{c_p \cdot d_p \cdot \rho_p \cdot A_p}{c_a \cdot \rho_a \cdot V}$$

As simplification ϕ may be taken equal to 0 (safe-sided approach), which results in a modified section factor, the thermal section factor:

$$\frac{A_p}{V} \cdot \frac{\lambda_p}{d_p}$$

II L V JVV	199	197	161	179
IPE A 330	199	228	149	178
IPE 330	175	200	131	157
IPE O 330	152	175	114	137
IPE A 360	185	211	138	165
IPE 360	163	186	122	146
IPE O 360	142	162	107	127
IPE A 400	176	200	133	158
IPE 400	152	174	116	137
IPE O 400	135	154	103	122
IPE A 450	165	187	127	149
IPE 450	143	162	110	130
IPE O 450	122	138	94	110
IPE A 500	152	172	118	138
IPE 500	134	151	104	121
IPE O 500	114	129	89	104
IPE A 550	142	160	111	129
IPE 550	124	140	97	113
IPE O 550	108	121	85	98
IPE A 600	131	147	103	119
IPE 600	115	129	91	105
IPE O 600	93	104	73	85
750 x 137	128	144	101	116
750 x 147	120	134	94	109
750 x 173	102	114	81	93
750 x 196	91	102	72	83

Pietro Croce - Resistenza al fuoco delle strutture

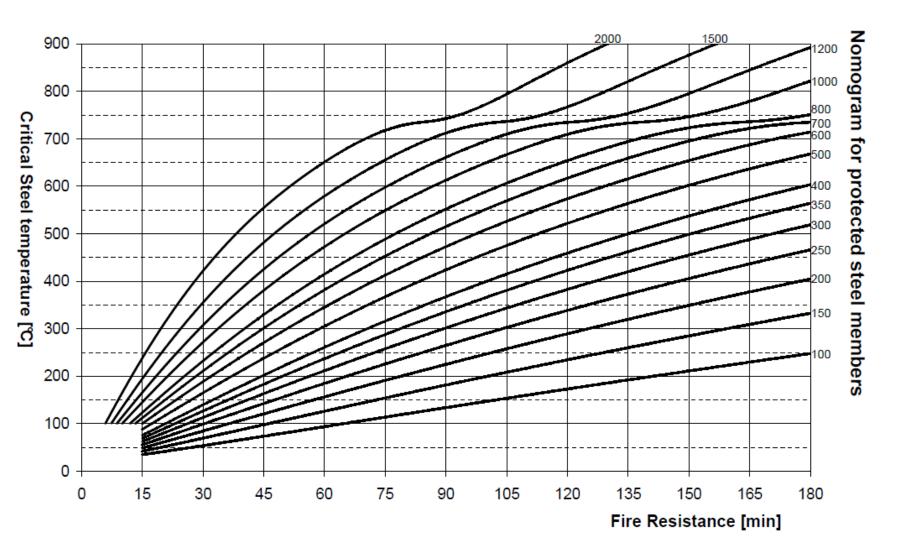
	111111111	—	111111111111111111111111111111111111111	ì
HE	ŀŢ.	- I -	-Ш-	-
	ŕ	\overline{T}	\overline{T}	/
HE 100 AA HE 100 A	290 217	355 264	181 138	24
HE 100 B	180	218	115	1
HE 100 M	96	116	65	
IE 120 AA	296	361	182	2
HE 120 A HE 120 B	220 167	267 202	137 106	1:
HE 120 M	92	111	61	
IE 140 AA	281	342	172	2
HE 140 A	208	253	129	1
HE 140 B HE 140 M	155 88	187 106	98 58	
IE 160 AA	244	297	150	2
HE 160 A HE 160 B	192	234	120	1
HE 160 B	140 83	169 100	88 54	1
HE 160 M HE 180 AA	229	279	141	1
HF 180 A	187	226	115	1
HE 180 B	131	159	83	1
HE 180 B HE 180 M HE 200 AA	80 211	96 256	52 130	1
HE 200 A	174	211	108	1
HE 200 B HE 200 M	122	147	77	1
HE 200 M	76	92	49	_ 6
HE 220 AA HE 220 A	200 161	242 195	122 99	1:
HE 220 B	115	140	72	g
HE 220 B HE 220 M	73	88	47	1:
IE 240 AA	185	225	114	
HE 240 A HE 240 B	147 108	178 131	91 68	1:
HE 240 M	61	73	39	1-
IE 260 AA	176	214	108	
HE 260 A HE 260 B	141 105	171 127	88 66	1
HE 260 B HE 260 M	59	72	39	į
IE 280 AA	168	204	104	1:
HE 280 A	136 102	165 123	84 64	1 8
HE 280 B HE 280 M	59	71	38	
1E 300 AA	158	192	97	1
HE 300 A	126	153	78	1
HE 300 B HE 300 M	96 50	116 60	60 33	4
IE 320 AA	152	184	95	1
HE 320 A	117	141	74	8
HE 320 B HE 320 M	91 50	110	58 33	7
HE 320 M HE 340 AA	147	60 177	94	1
HE 340 A	112	134	72	8
HE 340 B	88	106	57	7
HE 340 M HE 360 AA	50 142	60 170	92	1
HE 360 A	107	128	70	8
HE 360 B	86	102	56	7
HE 360 M	51 135	61	34	1
HE 400 AA HE 400 A	135 101	161 120	90 68	1 8
HE 400 A	82	97	56	7
HE 400 M	52	62	36	4
1E 450 AA	133	156	91	1
HE 450 A HE 450 B	96 79	113 93	66 55	8
HE 450 M	53	62	38	4
IE 500 AA	130	152	91	1

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Coefficienti di sezione per acciaio protetto

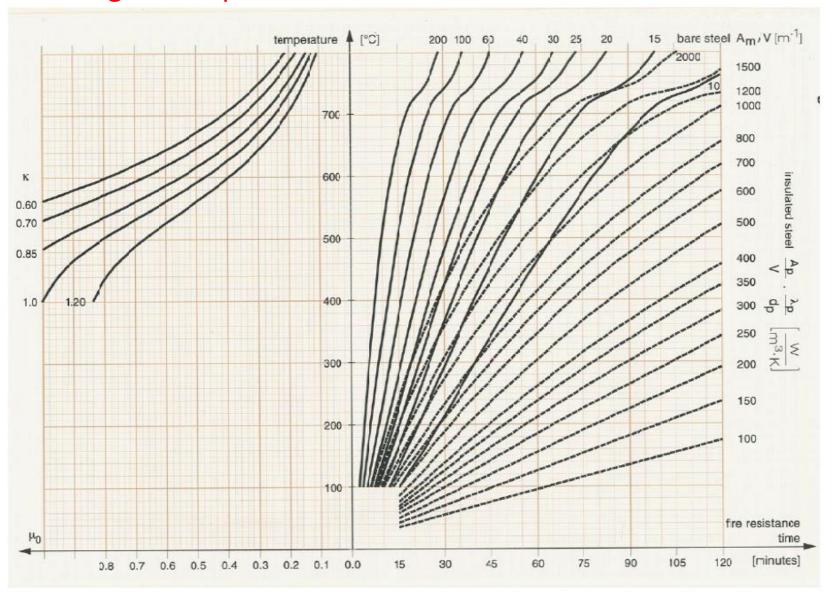
For a uniform temperature distribution in a cross-section, the temperature increase $\Delta\Theta_{a,t}$ of an insulated steel member during a time interval Δ_t is given by:

$$\Delta\Theta_{a,t} = \frac{A_p}{V} \cdot \frac{\lambda_p}{d_p} \cdot \frac{1}{1+\phi/3} \cdot \left[\frac{\left(\Theta_{g,t} - \Theta_{a,t}\right)}{c_a \cdot \rho_a} \cdot \Delta_t \right] - \left(e^{\phi/10} - 1\right) \cdot \Delta\Theta_{g,t} \; \; ; \; \; \text{with} \qquad \phi = \frac{c_p \cdot d_p \cdot \rho_p \cdot A_p}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot \rho_a \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot d_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot \rho_a \cdot V} = \frac{c_p \cdot Q_p \cdot V}{c_a \cdot V} = \frac$$

As simplification ϕ may be taken equal to 0 (safe-sided approach), which results in a modified section factor, the thermal section factor:


Table 6.1: General properties for prelimation of the section factor in the section factor.

 $\frac{A_p}{V} \cdot \frac{\lambda_p}{d_p}$


	Unit mass	Thermal conductivity λ _p	Specific heat cp	
Material	$\rho_p [kg/m^3]$	[W/(m.K)]	[J/(kg.K)]	
Sprays				
- mineral fibre	300	0.12	1200	
- vermiculite cement	350	0.12	1200	
- perlite	350	0.12	1200	
High-density sprays				
- vermiculite (or perlite)	550	0.12	1100	
and cement				
- vermiculite (or perlite)	650	0.12	1100	
and gypsum				
Boards				
- vermiculite (or perlite)	800	0.2	1200	
and cement				
- fibre-silicate or	600	0.15	1200	
fibre calcium-silicate				
- fibre-cement	800	0.15	1200	
- gypsum board	800	0.20	1700	
Compressed fibre boards				
- fibre-silicate, mineral-wool	150	0.2	1200	
stone-wool				
Concrete	2300	1.60	1000	
Light weight concrete	1600	0.80	840	
Concrete bricks	2200	1.00	1200	
Bricks with holes	1000	0.40	1200	
Solid bricks	2000	1.20	1200	

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2)

Nomogramma per la determinazione della resistenza al fuoco di acciaio protetto

Proprietà dei materiali – Acciaio strutturale (EN 1993-1-2) Nomogramma per la determinazione della resistenza al fuoco

Grazie per l'attenzione