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Abstract—In this paper, we present a framework aimed at on simulation and testing. A rigorous development process

simulating control logics specified in the higher-order logic of would benefit from the combined application of formal verifi-

the Prototype Verification SystenThe framework offers alibrary — c4ti0n, simulation, and testing. In particular, simulatigould
of predefined modules, a method for the composition of more b t lidat ificati inst . t
complex modules, and an event-driven simulation engine. A € a means 10 validate Specincations against requirements.

developer simulates the specified system by providing its input However, verification tools (such as theorem provers and
waveforms as functions from time to logic levels. Once the sim- model checkers) and simulation tools use different langsag

ulation experiments give sufficient confidence in the correctness and few designers are versed in the use of both kinds of tools.

of the specification, the model can serve as a basis for the formal . . . . .
verification of desired properties of interest. A simple case study This work is a f!rst step in a research activity _V\_/ho_se
from a nuclear power plant application is shown. This paper is expected outcome is a toolset that translates specifigation

a contribution to research aimed at improving the development from an application-oriented language into a high-ordegido
process of safety-critical systems by integrating simulation and theory that guides the execution of the simulator described
formal specification methods. L . in this paper. When the simulation results make developers
Index Terms—PVS; simulation; formal specification; validation confident that the specifications are correct, a more deltaile
and formal analysis may be done by theorem proving. The
|. INTRODUCTION theorem proving approach was chosen as it may be expected to

avoid the problem of state space explosion that model chgcki

Control systems are an important field of application fqgg|s face in the analysis of complex real-time systems.
formal methods and rigorous engineering practices, since

they combine real-time requirements and non-trivial caintr

tasks whose failure may compromise safety. Subtle design 1. PVS AND PVSIO

faults, which are often difficult to avoid and tolerate, ahd t

possibility of failures caused by the occurrence of noniobsy ~ The PVS [1] specification language builds on classical

combinations of events, make such systems hard to certify wiyped higher-order logic with the usual base typbsol ,

respect to safety requirements. nat, i nt eger, real , among others, and the function type
In this paper, we present a methodology aimed at simulgenstructor (e.g., typpA -> B] is the set of functions from

ing control logics specified in the higher-order logic of th&etA to setB). Predicates are functions with range typeol .

Prototype Verification System (PVR]. We have developed a The type system of PVS also includes record types, dependent

library of (purely logic) specifications for typical contdogic types, and abstract data types.

components, a methodology to combine them into more com-PVS specifications are packaged thgoriesthat can be

plex systems, and a simulation engine capable of animatipgrametric in types and constants. A collection of built-

the formal specifications with the PVS ground evaluator. in (preludg theories and loadable libraries provide standard
Section Il exposes the motivations for this work. We inspecifications and proved facts for a large number of theorie

troduce the PVS system in Section Ill, then we describe tie theory can use the definitions and theorems of another

theories for the logical specification of control compomsentheory byimporting it.

(Section 1V) and the theory defining the simulator (Sectign V. PVS has an automated theorem prover. A less frequently

In Section VI we describe a simple case study from the fieltsed component is itground evaluatorf4], used to animate

of control logics for nuclear power plants (NPPs), and finallfunctional specifications by translating executable PV8-co

the conclusion and related work are found in Section VII. structs into efficient.isp code. ThePVSiopackage [5] extends

the ground evaluator with a library of imperative programgni

language features such as side effects, unbounded loops,
The use of formal methods is increasingly being required land input/output operations. Thus, PVS specifications @n b

international standards for the development of safetycalit conveniently animated within theead-eval-printloop of the

digital control systems (e.g., [2], [3]), but, in industrjgrac- ground evaluator that reads PVS expressions from the user

tice, verification and validation of such systems reliesviiga interface and returns the result of their evaluation.

II. MOTIVATION



IV. MODELING CONTROL LoOGICS

In this section we describe the PVS theories developed to r q
formally model control logics. We start with the PVS theerie o
that model time, logic levels, signals, and basic operatimm
signals. Then, we introduce samples of the library for th&da 1
digital modules of a system, such as logic gates and timers.

Finally, we show how to build complex components out of

basic elements. The developed theories are executablai-defi @
tions always use interpreted types and quantification isydw

performed over bounded types. In the following sectiongy on

thet i me_t h theory will be shown in a syntactically complete

form; to save space, only fragments of PVS code will be show@ the values of signals at each given time are defirs@R(
in the rest of the paper for the other theories. sAND, sNOT). Sample definitions of this theory follow.

A. Time and Logic Levels I MPORTING time_th, logic_levels_th
9 signal: TYPE = [tine -> |ogic_|evel]

Theoryti me_t h (shown below) contains the type definitres: {t: interval | t > 0}

tion of time (modeled as ranging over the continuous domaffike_periodic(s: signal, T interval): signal =
% definition not shown

of real numbers) and time interval. constval (v: logic_level): signal =

LAMBDA (t: tine): v
step(tau: tine): signal =

LAMBDA (t: tine):

IFt >= tau THEN one ELSE zero ENDI F

pul se(tau: tine, d: posreal): signal =

% definition not shown

. P : rising_edge?(i: signal, tau: time): bool =
Besujes 'thezer o and one'loglcal values, modeling hard- zer0?(i (tau - tres)) AND one?(i(tau + tres))
ware circuits requires additional levels fonknownvalues AND one?(i (tau))
andhigh impedanceUnknown values are useful to model theAND(s1, s2: signal): ISI gnal = X
logic level when the digital circuit is powered up, while hig LAVBDA (t: time): [TAND(s1(t), s2(t))
impedance represents open cwcu@s (de5|gneq or faulty). ¢ Digital Modules

Theoryl ogi c_| evel s_t h provides the definitions of the | ; K irol logic i e digital

logic levels and of the basic logical operators over the -four n our Iframework, a control logic IS @omposite digita

valued logic [ AND, | OR, | NOT). In the following fragment module obtained by connectingasic digital modules
we show the first definitions of the theory. Digital modules are characterized by a sepofts a state

_ that is the collection of all signals present at its portsg an
logic_level: TYPE = bel ow(4) a transition functionthat specifies how the state changes

SR

Fig. 1.  An SR flip-flop.

tinme_th: THEORY

BEG N

time: TYPE = real

interval: TYPE = {t: time | t >= 0}
END tine_th

zero: logic_level = 0; . . . .
one: Iog?c_l_evel =1 according to a module’s functionality. The behavior of each
Z: logic_level = 2, %- high inpedance module in the framework is defined by its transition function
3 H _ . Ofy - . . . .
IU-AN' ogic_level =3, %- unknown value Ports are abstractions of the terminals of physical devices
D(v1l, v2: logic_level): logic_level = .. i . .
I F one?(v1) AND one?(v2) THEN one Each port is identified by itgategory(one of input, output
ELSIF zero?(vl) OR zero?(v2) THEN zero internal) and its port number within the category. Basic
ELSE U ENDI F modules have only input and output ports, whereas composite
, modules also have internal ports. In a composite module, the
B. Signals

input and output ports are its externally visible terminals
A signal describes the variation of a logic level over timegnd its internal ports are the ports of the (basic) component
and we represent signals as functions from the domain mmbdules that are not externally visible.
time to logic levels. Theorsi gnal s_t h contains, besides For example, a NOR gate is modeled as a module with two
the definition ofsi gnal , the symbolic constant for time input ports, one output port, and no internal ports. Another
resolution,t r es, which models the minimum time betweerexample is an SR flip-flop, which can be modeled either as a
two observable variations of a signal, and the definition of@asic module (Figure 1(a)) with two input ports, two output
utility function to build periodic signalsnieke_peri odi ¢). ports and no internal ports, or as a composite module built
Basic signals provided in the theory areonstval, a from two NOR gates. In the latter case, the resulting system
constant logical levelst ep, a signal that goes from zero tois shown in Figure 1(b), where porig, of gateGo andz1;
one at timer; pul se, a signal that is one only in the timeof gateG; are input ports, portg, of Gy andy, of GG; are
interval [, 7 4+ d), whered is the interval size. output ports, and portsy; andx are internal ports.
Some useful predicates on signals are defined, such a3heorydi gi tal nodul es_t h contains type definitions
ri sing_edge?, used to detect if a signa has a rising for the state of a digital modulest at e) and for transition
edge at timet au. Operations that apply logical connectivesunctions @i gi t al _nodul e). Type st at e the value of



the signals present at any time is a record that maintainsl) Logic gates: The | ogi ¢c_gat es_t h theory defines
the lists of signals applied at any time on its ports. It habe transition functions of the basic combinatorial gatdse
one list of signals for each of the three port categories, atiteory is parameterized by the propagation delay of thesgate
a port of the system is identified by its position in the list As the state is defined by thegnalsat the ports (and not
of the corresponding category. In the rest of this paper thige instantaneous values), the new state will normally haleq
term signal will sometimes be used instead pbrt, so that to the previous one, unless the environment applies differe
“signal z” means “the signal present at part The transition signals to the inputs (e.g., a pulse replaces a constarl).leve

function typedi gi t al _nodul e is time-dependent and hasThe definition for the NOR gate is shown below.

the signaturdtime — [state — state]].

| ogi c_gates_th[del ay: nonneg_real]: THEORY

Note that the state of a module is defined as the set BHG N | MPORTI NG basi c_di gi tal _nodul es_th

si gnal s applied to, or generated by, the module at a givedt ENOR basic_di gi tal _nodul e(2,

time, and not as the set of their instantaneous values.

The theory includes also a number of auxiliary functions to

build lists of ports (i.e., of signals) and to select a spegfirt
of a module, such gsort s(n), ports(s,n), etc. The first
definitions of the theory follow.

| MPORTI NG signals_th

ports: TYPE = list[signal]
state: TYPE = [# input: ports, output: ports,
internal: ports #]

digital _nmodule: TYPE = [tine -> [state -> state]
% - port constructors

ports(n: nat): RECURSIVE
{p: ports | length(p) = n} =
IF n =0 THEN null
ELSE cons(constval (U), ports(n - 1)) END F
MEASURE n
ports(s: signal, n: nat): RECURSIVE
{p: ports | length(p) = n} =
% definition not shown
% - port selectors
port(p: ports, i: belowlength(p))): signal =

nth(p,i)

Typesstate anddi gi tal _nodul e are very general

digital modules and composite digital modules.

D. Basic Digital Modules

1) =
LAMBDA (t: time): LAMBDA (s: state(2, 1)):
s WTH [output := ports(tine_shift(
sNOR(port O(i nput(s)), portl(input(s))),
del ay))]

2) Timers: The ti mer s_t h theory defines devices that
generate a single pulse when they receive a rising edge on the
input port. The pulse duration is a parameter of the device.
Their response to the input depends on previous values of the
output and possibly of the input(s).
timers_th[delay: nonneg_real]: THEORY
BEG N | MPORTI NG basi c_di gi tal _npdul es_th

timerMd: posreal): basic_digital _mdule(l, 1) =

LAVMBDA (t: tine): LAMBDA (s: state(l, 1)):
I'F rising_edge?(portO(input(s)), t) AND
zero?(portO(out put(s)), t)
THEN s WTH [output := ports(pul se(t+delay, d))]
ELSE s ENDI F

The theory defines also resettable timers (not shown), whose
output drops to zero on receiving a rising edge at the resét po

3) Flip-flops: The fli pfl op_th theory defines 1-bit
registers, such as the SR flip-flop (Figure 1(a)). Perésdr

! o _ ' are the set and reset terminals, the stored bit is on the butpu
and they are refined by subtyping in the theories for basrﬂ‘farkedq

and¢’ is its complement. Portg andq¢’ hold their

previous value wher andr are both zero. I becomes one
while r is zero, thery is one, and stays at one even after
returns zero. Similarly, i~ becomes one while is zero, then

Basic digital modules are elements without a visible mdarnq is zero, and stays at zero even aftereturns zero.

structure, defined only by their input and output ports and bY
their transition function. The state of a basic module has %

i pfl op_th[del ay: nonneg_real]: THEORY
Ba N | MPORTI NG basi c_digital _nodules_th

empty list of internal signals, and the lists of input andpaiit f1ipflopSR basic_digital _nodul e(2, 2) =

signals have a predefined length.

The theory is parametric with respect to a parameter

LAMBDA (t: time): LAMBDA (st: state(2, 2)):
LET r = portO(input(st)), s = portl(input(st)),
q = portO(output(st)), qg_prime = portl(output(st))

del ay, representing the time needed by the component toIN | F zero?(s, t) AND zero?(r, t) THEN st

change its outputs when its inputs change.

In addition to the parameterized definitions for the stat an

transition function types, the theory contains a state troo®r
(new_st at e). Part of the theory is shown below.

basi c_digital _npdul es_th[del ay: nonneg_real]: THEORY
BEG N | MPORTI NG di gital _nodul es_th
state(nlN, nQUT: nat): TYPE =
{s: state | length(input(s)) = nlN AND
| engt h(out put (s)) = nQUT AND

length(internal (s)) =0 }
basi c_digital _nodul e(nIN, nOQUT: nat): TYPE =
[time -> [state(nI N, nOUT) -> state(nIN, nQOUT)]]

ELSIF one?(s, t) AND zero?(r, t)
THEN | F zero?(q, t) AND one?(q_prime, t)
THEN st WTH [output := ports
(step(t+del ay), sNOT(step(t+delay)))]
ELSE st ENDI F
ELSI F zero?(s, t) AND one?(r, t)
THEN | F one?(q, t) AND zero?(q_prime, t)
THEN st W TH [output := ports
(sNOT(step(t+delay)), step(t+delay))]
ELSE st ENDI F
ELSE st WTH [output := ports(2)] ENDF

E. Composite Digital Modules
Basic digital modules can be connected together to create

This theory is imported by other theories that define varioe®mposite digital module§he corresponding theory contains
classes of basic blocks, such as logic gates, timers, and flimly the high-level definition for the state and the trawositi

flops, presented in the following.

function, and for a state constructor (not shown).



BEG N | MPORTI NG di gi tal _npdul es_th

state(nlN, nQUT, nINT: nat): TYPE =
{s: state | length(input(s)) = nlN AND
I engt h(out put(s)) = nOUT AND
I ength(internal (s)) = nINT}
conposite_digital _nmodul e(nl N, nOUT, nINT: nat):
TYPE = [time -> [state(nI N, nOUT, nlNT)
-> state(nIN, nOUT, nINT)]]

V. THE EVENT-DRIVEN SIMULATOR

This section describes an event-driven simulator of digita
modules. First, we introduceventsi.e., instants when a signal
may change its value. Second, we enrich the specification of
the system with events. Third, we present the event-driven
simulation engine, which uses the enriched specification to
evaluate the system only at specific instants, instead of at

1) Building Composite Digital ModulesA composite mod- periodic steps as in time-driven approaches [6].

ule is modeled by the composition of the transition functioh

its components, whose form depends on the interconnectighsEvents

of the components.

Theory event s_t h defines the typeevent as a record

In order to build the composite module, one must firg¥ith fields t, the instant of a single event or of the first of
define thesystemstate, i.e., the union of its input, output@ Series of periodic events, afd the period of the series
and internal ports. Then the subsets of the composite s{@ngle events havd=0). The theory includes the ordering
tem state relative to the componentoifiponent substates relation between events and operations on list of event®eSo
must be identified. Then the transition function is define@efinitions are shown below.
along the following lines: (i) Each port of the composite BEG N | MPORTING tine_th

module is assigned a unique name by equating the port tcgve”ti

a variable of typesi gnal in a LET expression (e.gr =

portO(i nput (st)) gives the namea to the first input

TYPE = [# t: time, T: interval
(el, e2: event): bool =
(t(el) <t(e2)) OR

(t(el) =t(e2) AND T(el) < T(e2));

#1;

port of statest ); (ii) for each basic component, we define its

current substate by selecting its input and output signmals f

B. Annotated Signals

the current system state; (i) for each basic component, weln theory annot at ed_si gnal s_t h we annotate the
define its next substate as a variable of tgteat e, and we formal specification of signals with the list of events asatsu
equate it to the basic component's transition function igopl with each signal. We redefine the typégnal as a record

to the current substate defined in the previous step; (iv) thth the fieldsval , the functional specification of the signal,
output signals of the new system state are the union of thed evts, the set of instants when the waveform changes
output signals of the new substates of the basic componevadue. For example, the set of events associated with aaunst
connected to the system output; (v) the internal signalsef tlevel generator is empty, while the set of events associaitixd
next system state are the union of the internal signals of tAepulse generator at time and durationd contains events

new substates of the basic components.

As an example, we show the composite module of the SR
flip-flop built from a pair of cross-coupled NOR logic gates:.

With reference to Figure 1(b), in this example pa@l is
renamed as 1, andx10 ass1.

flipflopSR conposite_digital _nodule(2, 2, 2) =
LAVBDA (t: tinme): LAMBDA (st: state(2, 2, 2)):
LET r = portO(input(st)), s = portl1(input(st)),

q = portO(output(st)), qg_prime = portl(output(st)),
rl = portO(internal (st)), sl1 = portl(internal(st)),
norO = gateNOR[tres](t)(new state(2, 1)

WTH [input := ports(r, rl),
output := ports(q)]),
norl = gateNOR[tres](t)(new state(2, 1)
WTH [input := ports(s, sl),
output := ports(q_prinme)])

IN st WTH [out put := ports(portO(output(nor0)),
portO(output(norl))),
;= ports(portO(output(norl)),

port O(out put (nor0)))]

i nt ernal

In the system transition functiofl i pfl opSR, we let
signalr be the signal on the first input ponpdr t 0) of the
current system statet , and similarly fors, q, q_pri ne,

s1, andr 1. Then, substateor O of gate@0 is the result of

and T + d, both with periodT’ = 0.
The basic operators on signals are re-defined to calculate th
events of the resulting signal, whose events are the union of
events of the operator parameters. Some events in theingsult
signal may not affect the signal value. For example, if afiii
one of thesOR inputs is a constarmine, no set of events on
the other input changes the output. Such redundant events,
however, do not affect the simulation.

The following fragment shows the definition 8NOR.

BEG N | MPORTI NG events_th, logic_levels_th

sNOR(sla, s2a: signal): signal =
LET s1 = val (sla), s2 = val (s2a),
f = LAMBDA (t: tinme):

IF one?(s1(t)) OR one?(s2(t)) THEN zero
ELSIF zero?(s1(t)) AND zero?(s2(t)) THEN one

ELSE U ENDI F,
e = evts(sla) + evts(s2a)
IN (# val :=f, evts := e #)

Annotated signals carry all the information needed by the
simulator to handle events, so the specification of the aligit
modules is unchanged.

C. Simulator
The simulator maintains a list of eventsvdrklist), ini-

transition functiongat eNOR. The argument of this function tialized with the starting time of the simulation. The ewent

is a state with input signals andr 1, and output signat]. A
similar description applies toor 1.

are listed in ascending order without duplicates. At each
simulation step, the simulator extracts the first eventrent



evenj from the worklist, and then it computes the next state  final _s = sinul ate_systen(N_STEPS) (fli pfl opSR)
by applying the system transition function at the time seti (initial _w)(outf, pn)
by the event. Then, the new events associated with the signal, y True (fnitial_st)
in the generated state are inserted in the worklist. ) ) ) ) _

1) Worklist: Theory worklist_th defines the type The S|mulat|on_ trace can be a list of event times, signal
worklist as a list of events, provides the functioryalués and worklist contents at each step, Matue Change
get _first that, given a current time, returns the firsPUMP[7] output, readable by a visualization tool (e.GTK-

event associated with a set of signals and greater than ¥Yave[8))- _ _
current time, and the functionpdat e_wl that updates the 3) Automated Execution of Test-Caséhe universal and

worklist. Functionupdat e_w finds the new events in the €xistential quantifiers of PVS can be used to automaticafty s

next state and inserts them in the worklist. Note that, sthee UP different simulation studies, e.g., to analyze the raspo
model of the system may contain ideal modules that upddtethe system to different input waveforms. This allows, for
instantaneously their output ports, functiopdat e_w must instance, instrumenting the framework for the execution of
not remove the current event from the worklist as longimulations in order to discover interesting test cases.

as the generated state is not stable. These simple worklist" the following example, the est _f I i pf| opSR func-
manipulators are not shown. tion uses theFORALL quantifier to generate all possible

2) Simulation Engine:The simulation engine applies thecombinations of logical levels. Each combination defines an

system transition function and returns the state of theegystinitial state for an SR flip-flop, and each state is used to
after a certain number of steps. It uses a customizdblgp COMPUte a next state.

function to output a simulation trace. test flipflop_th: THEORY BEG N %-inports omtted
_ % ...
simul ate_system(n_steps: nat) discrete_time: TYPE = bel ow(2)
(f: [time -> [state -> state]]) . ) _
(W: worklist)(outf: OStream pn: port_names): test_flipflopSR bool =

RECURSI VE [state -> state] = FORALL (t_set, t_reset: discrete_tine):
LAMVBDA (s: state): FCRALL_ (yl_, v2: logic_level): vl /= v2 =>
IF n_steps > 0 AND length(w) > 0 (LET initial st = new state(2, 2, 2)
THEN LET current _t = t(get_first(w)), WTH [input := ports(pul se(t_reset, 1),

s_prime = update_state(s)(current_t, f), pul se(t_set, 1)),

W _prime = update_w (W) (current_t, s, s_prine), output := ports(constval (vl),
dbg = dunp(outf, pn, s, s_prine, ) constval (v2)),
w, wW _prime, current_t) internal := ports(constva:Engj]
IN sinul ate_systenm(n_steps - 1)(f)(w _prine constval (v1 )

I i n((oatf ppn)(s)éri)ﬁm)_pl ) initial_w = worklist(initial_st, 0),
ELSE s ENDI F ' - final _s = simul ate_systen(5) (flipflopSR)

(initial _w)(outf,pn)(initial_st)
The input parameters are the maximum number of steps, the IN TRUE)
system transition function, the worklist, the output stne®r  exp test 1 pfiop_th
the trace, and the names of the signals. The function isctalle
with an initial worklist containing all events of the initiatate VI. CASE STUDY: A STEPWISESHUTDOWN LOGIC

and an event for the initial time. . o As an illustration of the practical applicability of the fre-
At_each step_, the functlon @ _gets the simulation time frorg,o ik presented in this paper, we report on a simple case
the first event in the worklist, (ii) generates the next systesyydy from the field of Instrumentation and Control for NPPs.
state, (iii) updates the worklist, and (iv) outputs the 8§t A high-level description of a control logic, expressed as a
state. The simulation terminates when either the new wairkliz nction Block Diagram [9], has been manually translated
is empty, or the maximum number of steps is reached.  jntg a PVS specification using the presented framework, and
The following excerpt shows how the digital modulghe specification has been animated to simulate the control
f1ipflopSRis simulated. In functiorsi m f1i pfl opSR,  |ggic. Simulated test cases have been automatically geera

the initial state is constructed from the signals at theydhe  5jjowing a possible malfunction to be detected at this early
worklist is initialized, andsi mul at e_syst emis invoked stage of development.

with the transition function as an argument. Tiesetport is
initially fed with a constant zero signal, theet port with a A. Description of a Stepwise Shutdown Logic

pulse of4s at time0.3, andq (¢') holds a constant zero (one). A stepwise shutdowprocess keeps process variables (such

simflipfl opSR(N_STEPS: nat): bool = as, e.g., temperature or neutron flux) within prescribedst
LET r = constval (zero), s = pul se(0.3, 4), olds by applying corrective actions (e.g., inserting cointr
?l‘:cg”;ﬁivfr{?,(zg;c’):' qf‘—p” me = constval (one), rods) not immediately to their full extent, but gradually, i
initial _st = newstate(2, 2, 2) a series of discrete steps separated by settling periods.
WTH [ioﬂltouht : _:_Pogitsgzy ). i) A Stepwise Shutdown Logic (SSL) was analyzed in [10]
i nt gr nal P port g‘(ri—psl)] . with a model checking approach. The framework proposed in

initial_w = worklist(initial_st, 0), this paper is used to analyze the same system.
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The requirements of the SSL, as described in [10], cdf™ ! ‘ ‘ !

be informally stated as follows: if amlarm signal (e.g., |~ | ‘ — ;

overpressure in a pipe) is asserted, the system must assert a

control signal to drive a corrective action for 3 secoratstie Fig. 5. Output of simsystem2, displayed with GTKWave.

period), then the control signal is reset for twelve seconds

(wait period and the cycle is repeated until either the alarm. ) ] ) ) ) o

signal is reset or a complete shutdown is reached. An operatgmulation 2 Signalp is a step function with the rising edge

however, by activating emanual tripsignal, may force the wait att =0.3s ar_1d signaimis a step _functi_on V,Vith the rising .edge
periods to be skipped in order to accelerate the process. att = 5s. This means that the trip switch is pushed during the

Figure 2 shows the main part of one of the SSL implemerSt wait period. As expected, that wait period is interagyt
tations analyzed in [10], whenmis the manual tripp is an a new3s output pulse is generated, and the subsequent pulses

alarm signal, andut is the control signal. When all signals&'€ 9enerated with the normels cycle, since the trip switch
are low, the output 2_out of timer T2 is low, and the AND has not been released and the resettable timer responds only

gate is enabled. Whep is asserted, its rising edge passe® @ M1sing edge (Fig. 5).
through the AND gate to the input of the T1 timer that sends$ m systen2: bool =

; ; ET initial _st =
a 3s pulse to the output. The output is fed back to the mpufnew_St ate(nl N, nOUT, niNT)

of T2, a resettable timer with a pulse duration Idfs. The WTH [input := ports(step(5), step(0.3)),
output pulse of T2 disables the AND gate that in turn resets output := ports(constval (zero)),
the input of T1. Since T1 is not resettable, its output pulse. internal := ports(constval(zero), nINT)J,

.. initial_w = worklist(initial_st, 0),
lasts for three seconds, then returns to low for the rem@inin ¢ ha| s™= si mul ate_syst en{ NSTEPS) ( syst enC)

12s of the T2 pulse. After this wait period, the output of T2 (initial _w)(outf, pn)(initial_st)
goes low, the AND gate is enabled, and T1 starts a new pulsé N TRUE
if an input signal is still asserted. Simulation 3 In this instance, signgl is a step function with

If p is high, andmis asserted during a wait period, T2 ishe rising edge at = 1s and signalmis a pulse of duration
reset and its output enables the AND gate, allowing the trig starting att = 2s followed by another pulse of duration
signal to reach T1 and restart it at the end of 33epulse. 35 at ¢ = 10s. In this case, the manual intervention occurs

The SSL is modeled by theyst enC transition function during the active period of the first output pulse. Contrary
(see Figure 3), according to the guidelines in Section IV. to expectation, after the end of this output pulse, the dutpu

is stuck at zero and no further corrective action takes place
B. Simulation of the Stepwise Shutdown Logic even if the alarm (high pressure) persists and the manyal tri

In this section we show some simulated situations. switch is pressed again. A fundamental safety requirengent i
thus violated (Fig. 6).

Simulation 1 Signal p is a step function with the rising si m systens: bool =
edge att = 0.3s, and signalmis a constant zero (no manual LET i n;t'tal( _IST\I = 'NT)

. . . . new_saen,n(lJ,n

intervention). The control logic produces a series of milSe "\ T/ i nput - = ports(sOR(pul se(2,1), pul se(10,3)),

that drive the plant towards a shutdown, as expected (Fig. 4) step(1)),
In the following, we show the PVS code for this simulation. output := ports(constval(zero)),
internal := ports(constval (zero), nINT)],
simsystenl: bool = initial_w = worklist(initial_st, 0),
LET initial _st = final _s = sinul ate_systen NSTEPS) ( syst enC)
new st ate(nl N, nOUT, nl NT) (initial _w)(outf, pn)(initial_st)
W TH [input := ports(constval (zero), step(0.3)), I'N TRUE
out put := ports(constval (zero)),
internal := ports(constval (zero), nINT)],
initial_wWw = worklist(initial_st, 0), _ i i i
Final s = similate system( NSTEPS) (systenc) Tgst Cases Interesting glmulatlon examples, sgch as
(initial _w)(outf, pn)(initial st) si m systenB, can be discovered by instrumenting the

IN TRUE framework for the execution of test cases.



systenC:. conposite_digital _nodul e(nl N, nOUT,
LAMBDA (t: time): LAMBDA (st: state(nlN, nQOUT,
LET m = portO(input(st)), p = portl(input(st)),
t2_in = portO(internal (st)), t2_out

% simlar definitions for or_in, and_en,
rtimer =

or2 =

nl NT) =

out

timer = timerM T2] (D1) (t)(new_state(2,1) WTH [input:=ports(tl_in),
INst WTH [input := ports(m p), output
internal := ports(portO(output(timer)),
portO(output(rtimer)), portO(output(or2)),
Fig. 3.

Li"e ?) — 10 sec

[} LT

or_out | ]

t2zout | [

tlin

out L1

Fig. 6. Output of simsystem3, displayed with GTKWave.

In the following example, functiort est _syst em uses

the FORALL quantifier to automatically generate the initia

nl NT)):

port O(out put (st)),

= portl(internal (st)),

and_out

rtimerM T1](D2)(t)(new state(2,1) WTH [input:=ports(t2_in,m,
gateOR[ TO] (t) (new_state(2,1) WTH [input:=ports(or_in,p),
inh_and = gateANDH TO] (t) (new_state(2,1) WTH [input:=ports(and_en, and_in),

out put:=ports(t2_out)]),

out put: =ports(or_out)]),

out put: =ports(and_out)]),
out put: =ports(out)])

:= ports(portO(output(tiner))),

portO(output(rtinmer)), m portO(output(or2)),

port O(out put (i nh_and)), portO(output(inh_and)))]

PVS model of the Stepwise Shutdown Logic.

is based on the paradigm of event-driven-simulation, asd it
core component is defined as a function in the higher-order
logic language of the PVS system. proving environment. The
approach has been applied to a simple case study in the field
of NPPs. The same case study had been previously studied by
other researchers with a model checking approach [10].

This work is part of our current research activity aiming at
developing a simulation and analysis framework for control
logics that enables developers to rely both on simulaticth an
fheorem proving to assess the correctness of specificatimhs
designs.

state for the different test cases. The initial states diffg
the starting time of the pulse applied to the manual trip.port
The ground evaluator implicitly transforms the univengall 1]
guantified formula ort 0 into a loop that, at each iteration,
generates a new initial state with a pulse startingt at
= 0,1,..,N1 on the manual trip port, and applies the 2]
simulator forNSTEPS steps.

simsystemtest(N nat): bool = 3]
FORALL(tO: bel om(N)):
LET initial _state = [4]
new_state(nl N, nOUT, nlNT)
WTH [input := ports(pulse(t0,1), step(l)),

out put := ports(constval (zero)), [5]

internal := ports(constval (zero), nINT)],
initial_wWw = worklist(initial_st, 0), [6]

final _s = sinul ate_syst en{ NSTEPS) (syst enCC)
(initial _wW)(outf, pn)(initial_st) 7]
I'N TRUE

(8]
VII. CONCLUSION AND RELATED WORK [9]

PVS has been used in various works to describe hardware
systems, e.g., in [11], [12], [13]. With our approach, thenfal [10]
specifications are executable and they can be simulated with
the ground evaluator of PVS. This way, once the simula-
tion experiments give developers sufficient confidence & th
correctness of the specification, the same PVS models ¢5H
serve as the basis for the formal verification of properties i
the theorem prover of PVS. It is known that a large share
of defects in computing systems stem from errors in tHeA!
formulation of specifications [14].

In the present work, a library of (purely logic) specifi{13]
cations for typical control logic components is presented,
and an approach to define an event-driven simulator capaflg
of executing the logic specifications is shown. The library
includes theories to model logic signals over time, whareeti
is a variable in the domain of real numbers. The simulator
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