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Abstract—In this paper, we present a framework aimed at
simulating control logics specified in the higher-order logic of
the Prototype Verification System. The framework offers a library
of predefined modules, a method for the composition of more
complex modules, and an event-driven simulation engine. A
developer simulates the specified system by providing its input
waveforms as functions from time to logic levels. Once the sim-
ulation experiments give sufficient confidence in the correctness
of the specification, the model can serve as a basis for the formal
verification of desired properties of interest. A simple case study
from a nuclear power plant application is shown. This paper is
a contribution to research aimed at improving the development
process of safety-critical systems by integrating simulation and
formal specification methods.

Index Terms—PVS; simulation; formal specification; validation

I. I NTRODUCTION

Control systems are an important field of application for
formal methods and rigorous engineering practices, since
they combine real-time requirements and non-trivial control
tasks whose failure may compromise safety. Subtle design
faults, which are often difficult to avoid and tolerate, and the
possibility of failures caused by the occurrence of non-obvious
combinations of events, make such systems hard to certify with
respect to safety requirements.

In this paper, we present a methodology aimed at simulat-
ing control logics specified in the higher-order logic of the
Prototype Verification System (PVS)[1]. We have developed a
library of (purely logic) specifications for typical control logic
components, a methodology to combine them into more com-
plex systems, and a simulation engine capable of animating
the formal specifications with the PVS ground evaluator.

Section II exposes the motivations for this work. We in-
troduce the PVS system in Section III, then we describe the
theories for the logical specification of control components
(Section IV) and the theory defining the simulator (Section V).
In Section VI we describe a simple case study from the field
of control logics for nuclear power plants (NPPs), and finally
the conclusion and related work are found in Section VII.

II. M OTIVATION

The use of formal methods is increasingly being required by
international standards for the development of safety critical
digital control systems (e.g., [2], [3]), but, in industrial prac-
tice, verification and validation of such systems relies heavily

on simulation and testing. A rigorous development process
would benefit from the combined application of formal verifi-
cation, simulation, and testing. In particular, simulation would
be a means to validate specifications against requirements.
However, verification tools (such as theorem provers and
model checkers) and simulation tools use different languages,
and few designers are versed in the use of both kinds of tools.

This work is a first step in a research activity whose
expected outcome is a toolset that translates specifications
from an application-oriented language into a high-order logic
theory that guides the execution of the simulator described
in this paper. When the simulation results make developers
confident that the specifications are correct, a more detailed
and formal analysis may be done by theorem proving. The
theorem proving approach was chosen as it may be expected to
avoid the problem of state space explosion that model checking
tools face in the analysis of complex real-time systems.

III. PVS AND PVSIO

The PVS [1] specification language builds on classical
typed higher-order logic with the usual base types,bool,
nat, integer, real, among others, and the function type
constructor (e.g., type[A -> B] is the set of functions from
setA to setB). Predicates are functions with range typebool.
The type system of PVS also includes record types, dependent
types, and abstract data types.

PVS specifications are packaged astheories that can be
parametric in types and constants. A collection of built-
in (prelude) theories and loadable libraries provide standard
specifications and proved facts for a large number of theories.
A theory can use the definitions and theorems of another
theory by importing it.

PVS has an automated theorem prover. A less frequently
used component is itsground evaluator[4], used to animate
functional specifications by translating executable PVS con-
structs into efficientLisp code. ThePVSiopackage [5] extends
the ground evaluator with a library of imperative programming
language features such as side effects, unbounded loops,
and input/output operations. Thus, PVS specifications can be
conveniently animated within theread-eval-print loop of the
ground evaluator that reads PVS expressions from the user
interface and returns the result of their evaluation.



IV. M ODELING CONTROL LOGICS

In this section we describe the PVS theories developed to
formally model control logics. We start with the PVS theories
that model time, logic levels, signals, and basic operations on
signals. Then, we introduce samples of the library for the basic
digital modules of a system, such as logic gates and timers.
Finally, we show how to build complex components out of
basic elements. The developed theories are executable: defini-
tions always use interpreted types and quantification is always
performed over bounded types. In the following sections, only
thetime_th theory will be shown in a syntactically complete
form; to save space, only fragments of PVS code will be shown
in the rest of the paper for the other theories.

A. Time and Logic Levels

Theorytime_th (shown below) contains the type defini-
tion of time (modeled as ranging over the continuous domain
of real numbers) and time interval.

time_th: THEORY
BEGIN
time: TYPE = real
interval: TYPE = {t: time | t >= 0}
END time_th

Besides thezero andone logical values, modeling hard-
ware circuits requires additional levels forunknownvalues
andhigh impedance. Unknown values are useful to model the
logic level when the digital circuit is powered up, while high
impedance represents open circuits (designed or faulty).

Theorylogic_levels_th provides the definitions of the
logic levels and of the basic logical operators over the four-
valued logic (lAND, lOR, lNOT). In the following fragment
we show the first definitions of the theory.

logic_level: TYPE = below(4)
zero: logic_level = 0;
one: logic_level = 1;
Z: logic_level = 2; %-- high impedance
U: logic_level = 3; %-- unknown value
lAND(v1, v2: logic_level): logic_level =

IF one?(v1) AND one?(v2) THEN one
ELSIF zero?(v1) OR zero?(v2) THEN zero
ELSE U ENDIF

B. Signals

A signal describes the variation of a logic level over time,
and we represent signals as functions from the domain of
time to logic levels. Theorysignals_th contains, besides
the definition of signal, the symbolic constant for time
resolution,tres, which models the minimum time between
two observable variations of a signal, and the definition of a
utility function to build periodic signals (make_periodic).

Basic signals provided in the theory are:constval, a
constant logical level;step, a signal that goes from zero to
one at timeτ ; pulse, a signal that is one only in the time
interval [τ, τ + d), whered is the interval size.

Some useful predicates on signals are defined, such as
rising_edge?, used to detect if a signals has a rising
edge at timetau. Operations that apply logical connectives
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Fig. 1. An SR flip-flop.

to the values of signals at each given time are defined (sOR,
sAND, sNOT). Sample definitions of this theory follow.

IMPORTING time_th, logic_levels_th
signal: TYPE = [time -> logic_level]
tres: {t: interval | t > 0}
make_periodic(s: signal, T: interval): signal =

% definition not shown
constval(v: logic_level): signal =

LAMBDA (t: time): v
step(tau: time): signal =

LAMBDA (t: time):
IF t >= tau THEN one ELSE zero ENDIF

pulse(tau: time, d: posreal): signal =
% definition not shown

rising_edge?(i: signal, tau: time): bool =
zero?(i(tau - tres)) AND one?(i(tau + tres))

AND one?(i(tau))
sAND(s1, s2: signal): signal =

LAMBDA (t: time): lAND(s1(t), s2(t))

C. Digital Modules

In our framework, a control logic is acomposite digital
module, obtained by connectingbasic digital modules.

Digital modules are characterized by a set ofports, a state,
that is the collection of all signals present at its ports, and
a transition function that specifies how the state changes
according to a module’s functionality. The behavior of each
module in the framework is defined by its transition function.

Ports are abstractions of the terminals of physical devices.
Each port is identified by itscategory(one of input, output,
internal) and its port number within the category. Basic
modules have only input and output ports, whereas composite
modules also have internal ports. In a composite module, the
input and output ports are its externally visible terminals,
and its internal ports are the ports of the (basic) component
modules that are not externally visible.

For example, a NOR gate is modeled as a module with two
input ports, one output port, and no internal ports. Another
example is an SR flip-flop, which can be modeled either as a
basic module (Figure 1(a)) with two input ports, two output
ports and no internal ports, or as a composite module built
from two NOR gates. In the latter case, the resulting system
is shown in Figure 1(b), where portsx00 of gateG0 andx11

of gateG1 are input ports, portsy0 of G0 and y1 of G1 are
output ports, and portsx01 andx10 are internal ports.

Theorydigital_modules_th contains type definitions
for the state of a digital module (state) and for transition
functions (digital_module). Type state the value of



the signals present at any time is a record that maintains
the lists of signals applied at any time on its ports. It has
one list of signals for each of the three port categories, and
a port of the system is identified by its position in the list
of the corresponding category. In the rest of this paper the
term signal will sometimes be used instead ofport, so that
“signal x” means “the signal present at portx”. The transition
function typedigital_module is time-dependent and has
the signature[time → [state → state]].

Note that the state of a module is defined as the set of
signals applied to, or generated by, the module at a given
time, and not as the set of their instantaneous values.

The theory includes also a number of auxiliary functions to
build lists of ports (i.e., of signals) and to select a specific port
of a module, such asports(n), ports(s, n), etc. The first
definitions of the theory follow.

IMPORTING signals_th
ports: TYPE = list[signal]
state: TYPE = [# input: ports, output: ports,

internal: ports #]
digital_module: TYPE = [time -> [state -> state]
%-- port constructors
ports(n: nat): RECURSIVE

{p: ports | length(p) = n} =
IF n = 0 THEN null
ELSE cons(constval(U), ports(n - 1)) ENDIF
MEASURE n

ports(s: signal, n: nat): RECURSIVE
{p: ports | length(p) = n} =

% definition not shown
%-- port selectors
port(p: ports, i: below(length(p))): signal =

nth(p,i)

Types state and digital_module are very general,
and they are refined by subtyping in the theories for basic
digital modules and composite digital modules.

D. Basic Digital Modules

Basic digital modules are elements without a visible internal
structure, defined only by their input and output ports and by
their transition function. The state of a basic module has an
empty list of internal signals, and the lists of input and output
signals have a predefined length.

The theory is parametric with respect to a parameter
delay, representing the time needed by the component to
change its outputs when its inputs change.

In addition to the parameterized definitions for the state and
transition function types, the theory contains a state constructor
(new_state). Part of the theory is shown below.

basic_digital_modules_th[delay: nonneg_real]: THEORY
BEGIN IMPORTING digital_modules_th
state(nIN, nOUT: nat): TYPE =

{s: state | length(input(s)) = nIN AND
length(output(s)) = nOUT AND
length(internal(s)) = 0 }

basic_digital_module(nIN, nOUT: nat): TYPE =
[time -> [state(nIN, nOUT) -> state(nIN, nOUT)]]

This theory is imported by other theories that define various
classes of basic blocks, such as logic gates, timers, and flip-
flops, presented in the following.

1) Logic gates: The logic_gates_th theory defines
the transition functions of the basic combinatorial gates.The
theory is parameterized by the propagation delay of the gates.

As the state is defined by thesignalsat the ports (and not
the instantaneous values), the new state will normally be equal
to the previous one, unless the environment applies different
signals to the inputs (e.g., a pulse replaces a constant level).
The definition for the NOR gate is shown below.

logic_gates_th[delay: nonneg_real]: THEORY
BEGIN IMPORTING basic_digital_modules_th
gateNOR: basic_digital_module(2, 1) =

LAMBDA (t: time): LAMBDA (s: state(2, 1)):
s WITH [output := ports(time_shift(

sNOR(port0(input(s)), port1(input(s))),
delay))]

2) Timers: The timers_th theory defines devices that
generate a single pulse when they receive a rising edge on their
input port. The pulse duration is a parameter of the device.
Their response to the input depends on previous values of the
output and possibly of the input(s).

timers_th[delay: nonneg_real]: THEORY
BEGIN IMPORTING basic_digital_modules_th

timerM(d: posreal): basic_digital_module(1, 1) =
LAMBDA (t: time): LAMBDA (s: state(1, 1)):

IF rising_edge?(port0(input(s)), t) AND
zero?(port0(output(s)), t)

THEN s WITH [output := ports(pulse(t+delay, d))]
ELSE s ENDIF

The theory defines also resettable timers (not shown), whose
output drops to zero on receiving a rising edge at the reset port.

3) Flip-flops: The flipflop_th theory defines 1-bit
registers, such as the SR flip-flop (Figure 1(a)). Portss andr
are the set and reset terminals, the stored bit is on the output
markedq, andq′ is its complement. Portsq andq′ hold their
previous value whens andr are both zero. Ifs becomes one
while r is zero, thenq is one, and stays at one even afters

returns zero. Similarly, ifr becomes one whiles is zero, then
q is zero, and stays at zero even afterr returns zero.

flipflop_th[delay: nonneg_real]: THEORY
BEGIN IMPORTING basic_digital_modules_th
flipflopSR: basic_digital_module(2, 2) =
LAMBDA (t: time): LAMBDA (st: state(2, 2)):
LET r = port0(input(st)), s = port1(input(st)),
q = port0(output(st)), q_prime = port1(output(st))

IN IF zero?(s, t) AND zero?(r, t) THEN st
ELSIF one?(s, t) AND zero?(r, t)
THEN IF zero?(q, t) AND one?(q_prime, t)

THEN st WITH [output := ports
(step(t+delay), sNOT(step(t+delay)))]

ELSE st ENDIF
ELSIF zero?(s, t) AND one?(r, t)
THEN IF one?(q, t) AND zero?(q_prime, t)

THEN st WITH [output := ports
(sNOT(step(t+delay)), step(t+delay))]

ELSE st ENDIF
ELSE st WITH [output := ports(2)] ENDIF

E. Composite Digital Modules

Basic digital modules can be connected together to create
composite digital modules. The corresponding theory contains
only the high-level definition for the state and the transition
function, and for a state constructor (not shown).



BEGIN IMPORTING digital_modules_th
state(nIN, nOUT, nINT: nat): TYPE =

{s: state | length(input(s)) = nIN AND
length(output(s)) = nOUT AND
length(internal(s)) = nINT}

composite_digital_module(nIN, nOUT, nINT: nat):
TYPE = [time -> [state(nIN, nOUT, nINT)

-> state(nIN, nOUT, nINT)]]

1) Building Composite Digital Modules:A composite mod-
ule is modeled by the composition of the transition functions of
its components, whose form depends on the interconnections
of the components.

In order to build the composite module, one must first
define thesystemstate, i.e., the union of its input, output,
and internal ports. Then the subsets of the composite sys-
tem state relative to the components (component substates)
must be identified. Then the transition function is defined
along the following lines: (i) Each port of the composite
module is assigned a unique name by equating the port to
a variable of typesignal in a LET expression (e.g.,r =
port0(input(st)) gives the namer to the first input
port of statest); (ii) for each basic component, we define its
current substate by selecting its input and output signals from
the current system state; (iii) for each basic component, we
define its next substate as a variable of typestate, and we
equate it to the basic component’s transition function applied
to the current substate defined in the previous step; (iv) the
output signals of the new system state are the union of the
output signals of the new substates of the basic components
connected to the system output; (v) the internal signals of the
next system state are the union of the internal signals of the
new substates of the basic components.

As an example, we show the composite module of the SR
flip-flop built from a pair of cross-coupled NOR logic gates.
With reference to Figure 1(b), in this example portx01 is
renamed asr1, andx10 ass1.

flipflopSR: composite_digital_module(2, 2, 2) =
LAMBDA (t: time): LAMBDA (st: state(2, 2, 2)):
LET r = port0(input(st)), s = port1(input(st)),
q = port0(output(st)), q_prime = port1(output(st)),
r1 = port0(internal(st)), s1 = port1(internal(st)),
nor0 = gateNOR[tres](t)(new_state(2, 1)

WITH [input := ports(r, r1),
output := ports(q)]),

nor1 = gateNOR[tres](t)(new_state(2, 1)
WITH [input := ports(s, s1),

output := ports(q_prime)])
IN st WITH [output := ports(port0(output(nor0)),

port0(output(nor1))),
internal := ports(port0(output(nor1)),

port0(output(nor0)))]

In the system transition functionflipflopSR, we let
signalr be the signal on the first input port (port0) of the
current system statest, and similarly fors, q, q_prime,
s1, andr1. Then, substatenor0 of gateG0 is the result of
transition functiongateNOR. The argument of this function
is a state with input signalsr andr1, and output signalq. A
similar description applies tonor1.

V. THE EVENT-DRIVEN SIMULATOR

This section describes an event-driven simulator of digital
modules. First, we introduceevents, i.e., instants when a signal
may change its value. Second, we enrich the specification of
the system with events. Third, we present the event-driven
simulation engine, which uses the enriched specification to
evaluate the system only at specific instants, instead of at
periodic steps as in time-driven approaches [6].

A. Events

Theory events_th defines the typeevent as a record
with fields t, the instant of a single event or of the first of
a series of periodic events, andT, the period of the series
(single events haveT=0). The theory includes the ordering
relation between events and operations on list of events. Some
definitions are shown below.

BEGIN IMPORTING time_th
event: TYPE = [# t: time, T: interval #];
<(e1, e2: event): bool =

(t(e1) < t(e2)) OR
(t(e1) = t(e2) AND T(e1) < T(e2));

B. Annotated Signals

In theory annotated_signals_th we annotate the
formal specification of signals with the list of events associated
with each signal. We redefine the typesignal as a record
with the fieldsval, the functional specification of the signal,
and evts, the set of instants when the waveform changes
value. For example, the set of events associated with a constant
level generator is empty, while the set of events associatedwith
a pulse generator at timeτ and durationd contains eventsτ
andτ + d, both with periodT = 0.

The basic operators on signals are re-defined to calculate the
events of the resulting signal, whose events are the union of
events of the operator parameters. Some events in the resulting
signal may not affect the signal value. For example, if initially
one of thesOR inputs is a constantone, no set of events on
the other input changes the output. Such redundant events,
however, do not affect the simulation.

The following fragment shows the definition ofsNOR.

BEGIN IMPORTING events_th, logic_levels_th
sNOR(s1a, s2a: signal): signal =
LET s1 = val(s1a), s2 = val(s2a),

f = LAMBDA (t: time):
IF one?(s1(t)) OR one?(s2(t)) THEN zero
ELSIF zero?(s1(t)) AND zero?(s2(t)) THEN one
ELSE U ENDIF,
e = evts(s1a) + evts(s2a)

IN (# val := f, evts := e #)

Annotated signals carry all the information needed by the
simulator to handle events, so the specification of the digital
modules is unchanged.

C. Simulator

The simulator maintains a list of events (worklist), ini-
tialized with the starting time of the simulation. The events
are listed in ascending order without duplicates. At each
simulation step, the simulator extracts the first event (current



event) from the worklist, and then it computes the next state
by applying the system transition function at the time specified
by the event. Then, the new events associated with the signals
in the generated state are inserted in the worklist.

1) Worklist: Theory worklist_th defines the type
worklist as a list of events, provides the function
get_first that, given a current time, returns the first
event associated with a set of signals and greater than the
current time, and the functionupdate_wl that updates the
worklist. Functionupdate_wl finds the new events in the
next state and inserts them in the worklist. Note that, sincethe
model of the system may contain ideal modules that update
instantaneously their output ports, functionupdate_wl must
not remove the current event from the worklist as long
as the generated state is not stable. These simple worklist
manipulators are not shown.

2) Simulation Engine:The simulation engine applies the
system transition function and returns the state of the system
after a certain number of steps. It uses a customizabledump
function to output a simulation trace.

simulate_system(n_steps: nat)
(f: [time -> [state -> state]])
(wl: worklist)(outf: OStream, pn: port_names):
RECURSIVE [state -> state] =

LAMBDA (s: state):
IF n_steps > 0 AND length(wl) > 0
THEN LET current_t = t(get_first(wl)),

s_prime = update_state(s)(current_t, f),
wl_prime = update_wl(wl)(current_t, s, s_prime),
dbg = dump(outf, pn, s, s_prime,

wl, wl_prime, current_t)
IN simulate_system(n_steps - 1)(f)(wl_prime)

(outf, pn)(s_prime)
ELSE s ENDIF

The input parameters are the maximum number of steps, the
system transition function, the worklist, the output stream for
the trace, and the names of the signals. The function is called
with an initial worklist containing all events of the initial state
and an event for the initial time.

At each step, the function (i) gets the simulation time from
the first event in the worklist, (ii) generates the next system
state, (iii) updates the worklist, and (iv) outputs the system
state. The simulation terminates when either the new worklist
is empty, or the maximum number of steps is reached.

The following excerpt shows how the digital module
flipflopSR is simulated. In functionsim_flipflopSR,
the initial state is constructed from the signals at the ports, the
worklist is initialized, andsimulate_system is invoked
with the transition function as an argument. Theresetport is
initially fed with a constant zero signal, theset port with a
pulse of4s at time0.3, andq (q′) holds a constant zero (one).

sim_flipflopSR(N_STEPS: nat): bool =
LET r = constval(zero), s = pulse(0.3, 4),

q = constval(zero), q_prime = constval(one),
r1 = q_prime, s1 = q,
initial_st = new_state(2, 2, 2)

WITH [input := ports(r, s),
output := ports(q, q_prime),
internal := ports(r1, s1)],

initial_wl = worklist(initial_st, 0),

final_s = simulate_system(N_STEPS)(flipflopSR)
(initial_wl)(outf, pn)
(initial_st)

IN TRUE

The simulation trace can be a list of event times, signal
values and worklist contents at each step, or aValue Change
Dump [7] output, readable by a visualization tool (e.g.,GTK-
Wave[8]).

3) Automated Execution of Test-Cases:The universal and
existential quantifiers of PVS can be used to automatically set
up different simulation studies, e.g., to analyze the response
of the system to different input waveforms. This allows, for
instance, instrumenting the framework for the execution of
simulations in order to discover interesting test cases.

In the following example, thetest_flipflopSR func-
tion uses theFORALL quantifier to generate all possible
combinations of logical levels. Each combination defines an
initial state for an SR flip-flop, and each state is used to
compute a next state.

test_flipflop_th: THEORY BEGIN %--imports omitted
% ...
discrete_time: TYPE = below(2)

test_flipflopSR: bool =
FORALL (t_set, t_reset: discrete_time):
FORALL (v1, v2: logic_level): v1 /= v2 =>
(LET initial_st = new_state(2, 2, 2)

WITH [input := ports(pulse(t_reset, 1),
pulse(t_set, 1)),

output := ports(constval(v1),
constval(v2)),

internal := ports(constval(v2),
constval(v1))],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(5)(flipflopSR)

(initial_wl)(outf,pn)(initial_st)
IN TRUE)

%...
END test_flipflop_th

VI. CASE STUDY: A STEPWISESHUTDOWN LOGIC

As an illustration of the practical applicability of the frame-
work presented in this paper, we report on a simple case
study from the field of Instrumentation and Control for NPPs.
A high-level description of a control logic, expressed as a
Function Block Diagram [9], has been manually translated
into a PVS specification using the presented framework, and
the specification has been animated to simulate the control
logic. Simulated test cases have been automatically generated,
allowing a possible malfunction to be detected at this early
stage of development.

A. Description of a Stepwise Shutdown Logic

A stepwise shutdownprocess keeps process variables (such
as, e.g., temperature or neutron flux) within prescribed thresh-
olds by applying corrective actions (e.g., inserting control
rods) not immediately to their full extent, but gradually, in
a series of discrete steps separated by settling periods.

A Stepwise Shutdown Logic (SSL) was analyzed in [10]
with a model checking approach. The framework proposed in
this paper is used to analyze the same system.
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Fig. 2. A close-up view of the stepwise shutdown logic.

The requirements of the SSL, as described in [10], can
be informally stated as follows: if analarm signal (e.g.,
overpressure in a pipe) is asserted, the system must assert a
control signal to drive a corrective action for 3 seconds (active
period), then the control signal is reset for twelve seconds
(wait period) and the cycle is repeated until either the alarm
signal is reset or a complete shutdown is reached. An operator,
however, by activating amanual tripsignal, may force the wait
periods to be skipped in order to accelerate the process.

Figure 2 shows the main part of one of the SSL implemen-
tations analyzed in [10], wherem is the manual trip,p is an
alarm signal, andout is the control signal. When all signals
are low, the outputt2_out of timer T2 is low, and the AND
gate is enabled. Whenp is asserted, its rising edge passes
through the AND gate to the input of the T1 timer that sends
a 3s pulse to the output. The output is fed back to the input
of T2, a resettable timer with a pulse duration of15s. The
output pulse of T2 disables the AND gate that in turn resets
the input of T1. Since T1 is not resettable, its output pulse
lasts for three seconds, then returns to low for the remaining
12s of the T2 pulse. After this wait period, the output of T2
goes low, the AND gate is enabled, and T1 starts a new pulse
if an input signal is still asserted.

If p is high, andm is asserted during a wait period, T2 is
reset and its output enables the AND gate, allowing the trip
signal to reach T1 and restart it at the end of the3s pulse.

The SSL is modeled by thesystemC transition function
(see Figure 3), according to the guidelines in Section IV.

B. Simulation of the Stepwise Shutdown Logic

In this section we show some simulated situations.

Simulation 1 Signal p is a step function with the rising
edge att = 0.3s, and signalm is a constant zero (no manual
intervention). The control logic produces a series of pulses
that drive the plant towards a shutdown, as expected (Fig. 4).
In the following, we show the PVS code for this simulation.

sim_system1: bool =
LET initial_st =
new_state(nIN, nOUT, nINT)
WITH [input := ports(constval(zero), step(0.3)),

output := ports(constval(zero)),
internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(NSTEPS)(systemC)

(initial_wl)(outf, pn)(initial_st)
IN TRUE
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Fig. 4. Output of simsystem1, displayed with GTKWave.
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Fig. 5. Output of simsystem2, displayed with GTKWave.

Simulation 2 Signalp is a step function with the rising edge
at t = 0.3s and signalm is a step function with the rising edge
at t = 5s. This means that the trip switch is pushed during the
first wait period. As expected, that wait period is interrupted,
a new3s output pulse is generated, and the subsequent pulses
are generated with the normal15s cycle, since the trip switch
has not been released and the resettable timer responds only
to a rising edge (Fig. 5).

sim_system2: bool =
LET initial_st =
new_state(nIN, nOUT, nINT)
WITH [input := ports(step(5), step(0.3)),

output := ports(constval(zero)),
internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(NSTEPS)(systemC)

(initial_wl)(outf, pn)(initial_st)
IN TRUE

Simulation 3 In this instance, signalp is a step function with
the rising edge att = 1s and signalm is a pulse of duration
1s starting att = 2s followed by another pulse of duration
3s at t = 10s. In this case, the manual intervention occurs
during the active period of the first output pulse. Contrary
to expectation, after the end of this output pulse, the output
is stuck at zero and no further corrective action takes place,
even if the alarm (high pressure) persists and the manual trip
switch is pressed again. A fundamental safety requirement is
thus violated (Fig. 6).

sim_system3: bool =
LET initial_st =
new_state(nIN, nOUT, nINT)
WITH [input := ports(sOR(pulse(2,1), pulse(10,3)),

step(1)),
output := ports(constval(zero)),
internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(NSTEPS)(systemC)

(initial_wl)(outf, pn)(initial_st)
IN TRUE

Test-Cases Interesting simulation examples, such as
sim_system3, can be discovered by instrumenting the
framework for the execution of test cases.



systemC: composite_digital_module(nIN, nOUT, nINT) =
LAMBDA (t: time): LAMBDA (st: state(nIN, nOUT, nINT)):
LET m = port0(input(st)), p = port1(input(st)), out = port0(output(st)),

t2_in = port0(internal(st)), t2_out = port1(internal(st)),
%- similar definitions for or_in, and_en, and_out
rtimer = rtimerM[T1](D2)(t)(new_state(2,1) WITH [input:=ports(t2_in,m), output:=ports(t2_out)]),
or2 = gateOR[T0](t)(new_state(2,1) WITH [input:=ports(or_in,p), output:=ports(or_out)]),
inh_and = gateANDH[T0](t)(new_state(2,1) WITH [input:=ports(and_en,and_in), output:=ports(and_out)]),
timer = timerM[T2](D1)(t)(new_state(2,1) WITH [input:=ports(t1_in), output:=ports(out)])

IN st WITH [input := ports(m, p), output := ports(port0(output(timer))),
internal := ports(port0(output(timer)), port0(output(rtimer)), m, port0(output(or2)),
port0(output(rtimer)), port0(output(or2)), port0(output(inh_and)), port0(output(inh_and)))]

Fig. 3. PVS model of the Stepwise Shutdown Logic.
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Fig. 6. Output of simsystem3, displayed with GTKWave.

In the following example, functiontest_system uses
the FORALL quantifier to automatically generate the initial
state for the different test cases. The initial states differ by
the starting time of the pulse applied to the manual trip port.
The ground evaluator implicitly transforms the universally
quantified formula ont0 into a loop that, at each iteration,
generates a new initial state with a pulse starting att0
= 0,1,..,N-1 on the manual trip port, and applies the
simulator forNSTEPS steps.

sim_system_test(N: nat): bool =
FORALL(t0: below(N)):
LET initial_state =

new_state(nIN, nOUT, nINT)
WITH [input := ports(pulse(t0,1), step(1)),

output := ports(constval(zero)),
internal := ports(constval(zero), nINT)],

initial_wl = worklist(initial_st, 0),
final_s = simulate_system(NSTEPS)(systemC)

(initial_wl)(outf, pn)(initial_st)
IN TRUE

VII. C ONCLUSION AND RELATED WORK

PVS has been used in various works to describe hardware
systems, e.g., in [11], [12], [13]. With our approach, the formal
specifications are executable and they can be simulated with
the ground evaluator of PVS. This way, once the simula-
tion experiments give developers sufficient confidence in the
correctness of the specification, the same PVS models can
serve as the basis for the formal verification of properties in
the theorem prover of PVS. It is known that a large share
of defects in computing systems stem from errors in the
formulation of specifications [14].

In the present work, a library of (purely logic) specifi-
cations for typical control logic components is presented,
and an approach to define an event-driven simulator capable
of executing the logic specifications is shown. The library
includes theories to model logic signals over time, where time
is a variable in the domain of real numbers. The simulator

is based on the paradigm of event-driven-simulation, and its
core component is defined as a function in the higher-order
logic language of the PVS system. proving environment. The
approach has been applied to a simple case study in the field
of NPPs. The same case study had been previously studied by
other researchers with a model checking approach [10].

This work is part of our current research activity aiming at
developing a simulation and analysis framework for control
logics that enables developers to rely both on simulation and
theorem proving to assess the correctness of specificationsand
designs.
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and J. J. Ḧamäläinen, “Verification of Safety Logic Designs by Model
Checking,” in Sixth American Nuclear Society International Topical
Meeting on Nuclear Plant Instrumentation, Control, and Human-
Machine Interface Technologies (NPIC&HMIT 2009), 2009.

[11] S. Owre, J. Rushby, N. Shankar, and M. Srivas, “A tutorial on using
PVS for hardware verification,” inTheorem Provers in Circuit Design
(TPCD ’94), ser. LNCS, R. Kumar and T. Kropf, Eds. Springer-Verlag,
1997, no. 901, pp. 258–279.

[12] M. Srivas, H. Rueß, and D. Cyrluk, “Hardware verification using PVS,”
in Formal Hardware Verification: Methods and Systems in Comparison,
ser. LNCS, T. Kropf, Ed. Springer-Verlag, 1997, no. 1287, pp. 156–205.
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