
Failure Probability of SRAM-FPGA Systems with

Stochastic Activity Networks

Cinzia Bernardeschi, Luca Cassano and Andrea Domenici

Department of Information Engineering, University of Pisa, Italy

Email: {cinzia.bernardeschi, luca.cassano, andrea.domenici}@ing.unipi.it

Abstract—We describe a simulation-based fault injection tech-
nique for calculating the probability of failures caused by SEUs
in the configuration memory of SRAM-FPGA systems. Our
approach relies on a model of FPGA netlists realised with the
Stochastic Activity Networks (SAN) formalism.

We validate our method by reproducing the results presented
in other studies for some representative combinatorial circuits,
and we explore the applicability of the proposed technique
by analysing the actual implementation of a circuit for the
generation of Cyclic Redundancy Check codes.

Index Terms—SRAM-FPGA; Failure Probability; Single Event
Upset; Simulation.

I. INTRODUCTION AND RELATED WORKS

Radiations in the atmosphere are responsible for introducing

Single Event Upsets (SEU) in digital devices [1]. SEUs have

particularly adverse effects on FPGAs using SRAM technol-

ogy, as they may alter a bit in the configuration memory,

causing a permanent error [2].

Programming an SRAM-FPGA device consists in down-

loading a programming code, called a bitstream, in its config-

uration memory, that determines the internal interconnections

and the programmable logic block functions of the system to

be implemented in the FPGA. Interconnections are realized

internally by routing switches and by I/O buffers between

input or output pins and the logic blocks. The commonest

programmable logic blocks are lookup tables (LUT), small

memories whose contents are defined by configuration bits.

SEUs in the configuration memory of an SRAM FPGA can

change the structure, and thus the functionality, of the system

implemented in the device.

Some authors (e.g.,[3]) classify reliability analysis tech-

niques for FPGA-based systems in three categories: radiation

testing, analytical models and fault injection techniques. Ra-

diation testing [4], [5] aims at measuring the reliability of a

physical prototype of the circuit by exposing it to radiation

fluxes. Analytical models [3], [6], [7], [8] use mathematical

formalism, such as Binary Decision Diagrams or Probabilistic

Transfer Matrices, to realize a model of the system and

then analyse its reliability. Fault injection techniques use a

prototype [9] or a simulated model [10], [11] of the system to

inject faults and find if they are propagated to the output or

not.

In this paper we present a simulation method for failure

probability analysis, based on the SAN formalism [12] and

developed with the Möbius tool [13]. Our approach relies

on the model of systems implemented on SRAM-FPGAs

presented in [14] for signal probability analysis. This model is

based on the netlist-level representation of an FPGA system

produced in the synthesis phase, before the place and route

phase. At this level, the elements visible in the model are I/O

buffers, LUTs, flip-flops, and multiplexers.

We extended this model introducing an accurate model of

single and multiple event upsets that may affect the configura-

tion memory of the FPGA chip at any clock cycle during the

simulation. This method aims at providing accuracy, flexibility,

and controllability. We point out that the main objective of this

method (and associated tool) is studying the system failure

probability depending on where in the circuit SEUs occur, on

the basis of input signal probabilities and SEU probabilities

whose values are assumed to be available from other sources.

The remainder of this paper is organized as follows: In

Section II the SAN formalism and the Möbius tool are briefly

illustrated and then a model of fault-free FPGA-based systems

is presented; in Section III the adopted fault model, the SAN

model for fault simulation and the simulation setup are pre-

sented; Section IV reports on the application of the approach to

a simple FPGA-based system; Section V concludes the paper.

II. THE FPGA MODEL

We introduce the main characteristics of the SAN formalism

and we briefly illustrate the fault-free FPGA model, referring

to [14] for a more detailed discussion.

A. The SAN Formalism

Stochastic Activity Networks [12] are an extension of the

Petri Nets (PN) formalism. SANs are directed graphs with

four disjoint sets of nodes: places, input gates, output gates,

and activities. The topology of a SAN is defined by its input

and output gates and by two functions that map input gates

to activities and pairs (activity, case) (see below) to output

gates, respectively. Each input (output) gate has a set of

input (output) places. The activities replace and extend the

transitions of the PN formalism. Each SAN activity may be

either instantaneous or timed. The duration of each timed

activity is expressed via a time distribution function. Any

instantaneous or timed activity may have mutually exclusive

outcomes, called cases, chosen probabilistically according to

the case distribution of the activity. As in PNs, the state of

a SAN is defined by its marking. The marking of each place

is a non-negative integer called its number of tokens or, in

extended places, a real value or a complex data structure.



SANs enable the user to specify any desired enabling

condition and firing rule for each activity. This is accomplished

by associating an enabling predicate and an input function to

each input gate, and an output function to each output gate. The

enabling predicate is a Boolean function of the marking of the

gate’s input places. The input and output functions compute

the next marking of the input and output places, respectively,

given their current marking. If these predicates and functions

are not specified, the standard PN rules are assumed.

Graphically, places are drawn as circles, input (output)

gates as left-pointing (right-pointing) triangles, instantaneous

activities as narrow vertical bars, and timed activities as thick

vertical bars. Cases are drawn as small circles on the right

side of activities. Gates with default (standard PN) enabling

predicates and firing rules are not shown.

A popular software tool to build and analyze SAN models is

Möbius [13], that provides a framework for model-based eval-

uation of system dependability and performance. In this tool,

properties of interest are specified with reward functions [15].

A reward function specifies how to measure a property on the

basis of the SAN marking. Evaluation of reward functions can

be made at specific time instants, over periods of time, or when

the system reaches a steady state. A desired confidence level is

associated to each reward function. At the end of a simulation

the Möbius tool is able to evaluate for each reward function

whether the desired confidence level has been attained or not,

thus ensuring a high accuracy of the results.

B. Description of the Model

The FPGA model is split into a number of modules: System

Manager, Input Vector, Combinatorial Logic and Sequential

Logic. Each module is a SAN and communicates with the

other modules through shared places, a Möbius extension to

SANs that enables communication among subsystems.

The System Manager module orchestrates the activity of the

other modules of the system according to the following steps:

(i) an input vector, i.e., an n-tuple of the input signal values,

is applied to the input lines; (ii) the combinatorial part of the

system is executed; (iii) a clock tick arrives and the sequential

part of the system is executed. These steps are repeated until

all input vectors have been applied.

The Input Vector module generates an input vector that is

applied to the input lines of the FPGA.

The Combinatorial Logic module models the combinatorial

part of the system, i.e., lookup tables, multiplexers, and

input/output buffers. The Sequential Logic module models

the flip-flops. Various types of flip-flops can be modeled

besides the basic D-edge-triggered. Combinatorial and se-

quential elements are represented as a SAN model, called

Generic_Component (see Figure 1). One replica of the

Generic_Component is generated for each element. Places

spA and spB are used to control the execution of a compo-

nent. The output gate OG0 implements the functionality of

the component. When the execute activity of a component

completes, the function specified in gate OG0 is executed, and

a token is added to spB.

Three shared extended places (input_lines,

output_lines, and internal_lines) encode the

value of the signals on the input, output, and internal

connections of the FPGA.

Fig. 1. Generic Component module.

The logical connections are specified in a connectivity

matrix, a data structure accessed by the input and output

functions of the model. This way, the connections are not

hardwired in the SAN models, and can be set up from a text

file generated with CAD tools, such as the Xilinx ISE tool [16],

on the basis of the specification of the FPGA-based system.

As discussed in [14], the proposed model can deal with

circuits whose combinatorial part has reconvergent fanouts,

with an accuracy that depends only on the number of simula-

tion batches, whereas other methods either ignore reconvergent

fanouts or consider a limited number of them.

III. FAULT MODEL AND SIMULATION

In this work we take into account single and multiple event

upsets in the configuration memory of an FPGA-based system

described at netlist level, considering LUTs and input and

output buffers. SEUs may occur at any clock cycle in the

simulation. In our fault model a SEU in the configuration bit

of an input/output buffer causes the buffer to hold the current

value of the output when the fault occurred. Thus, after a SEU

occurred, a buffer becomes insensitive to further changes of the

input signal. A SEU in the configuration memory of a lookup

table causes the lookup table to change the implemented

function. Our model is able to specify which configuration bit

is faulty, and a LUT generates an incorrect output only when

the input values are those associated to the faulty configuration

bit. This contrasts with other simpler models where a faulty

LUT is assumed to be faulty for all possible input values. In

the following we will use the term component to indicate only

LUTs and buffers, leaving out flip-flops and multiplexers.

In order to model the occurrence of event upsets in the com-

ponents of the FPGA at a random clock cycle, we extended

the Generic_Component module (Figure 1) of the model

described in [14] as shown in Figure 2. The extension consists

in adding an execution path to simulate behaviour in the

presence of faults and a mechanism to choose probabilistically

between correct or faulty execution, as explained below.

The following parameters must be specified: (i) the failure

probability of LUTs, pL; (ii) the failure probability of buffers,

pB ; (iii) the maximum number of faults to be injected, F ;

(iv) the number of clock cycles N ; and (v) the input signal

probabilities Pi.

Place faulty specifies whether the current component is

faulty or not. The num_faults place is shared among all



Fig. 2. The Extended Generic Component module.

the components of the netlist and specifies the current number

of faults already occurred.

The spA place is a shared array of Booleans whose i-th

element specifies whether the i-th component is currently ac-

tivated. When spA[i] is true the i-th component is executed.

First, start is enabled. When it completes, the output gate

OG0 executes the following algorithm: (i) If faulty is true,

then the current component is already faulty, and a token is

placed in p2; (ii) If faulty is false and the marking of

num_faults is less than F , then the current component is

still unfaulty and more faults can occur in the circuit, thus a

new fault could be injected and a token is placed in p1; (iii)

If faulty is false and the marking of num_faults equals

F , then the current component is unfaulty, no more faults can

occur and a token is placed in p0.

When a token is placed in p1 the inject_fault activity

becomes enabled. It is responsible for deciding whether a fault

has to be injected or not in the current component. With a prob-

ability 1−pL (or 1−pB , according to the type of component)

a token is placed in p0 and the current component remains

unfaulty. With a probability pL (pB) the inject_fault

activity enables output gate OG1 and the current component

is damaged. When executed, OG1 increments the marking

of num_faults to specify that a new fault occurred, sets

faulty to true to specify that the current component is faulty

and, if the current component is a LUT, it randomly chooses

which configuration bit of the LUT has to be corrupted. At

the end of the execution of OG1 a token is placed in p2.

At this point if the current component is still unfaulty,

the execute activity is enabled, and when it terminates,

the output gate OG1 is executed. OG1 implements the nor-

mal behaviour of the component. If the current component

was already faulty, or became faulty right now, the activity

faulty_execute is enabled. When the activity terminates

the output gate OG2 is executed. OG2 implements the failure

mode of the current component that has been described at the

begining of the section.

Our analysis was aimed at measuring the failure probability

of an FPGA-based system, by calculating the percentage of

clock cycles in which the expected output signals and the

actual ones were different for at least one value. Given the high

level of controllability and observability of the proposed tool,

it is also possible to compute the individual failure probability

of any output and internal signals of the system.

The simulations are performed according to the following

00

01

10

11

~{next_crc[4:7]}

~{crc_reg[3:0]}

d 4 update

{crc_reg[3:0], 4’h0}

8h’00

next_crc
8

crc_reg

calc

init

d_valid

0

1 crc

4

mux0

mux1

r0

r1

D

en
Q

D

en
Q

Fig. 3. A circuit to generate CRC code (adapted from [18]).

schema: (i) Two copies, called Golden Copy (GC) and The

Device Under Test (DUT), of the above described FPGA

model are instantiated in the simulator from the same netlist

description; (ii) random input vectors are generated according

to the specified signal probabilities of the input and fed to the

GC and DUT; (iii) the GC executes with no faults, while the

DUT injects faults according to the specified fault probabilities

and maximum number of injectable faults; (iv) at each clock

cycle the output values of the GC and the DUT are compared,

using a reward function that returns 1 if they are different for

at least one value.

IV. A SIMULATION EXAMPLE

To validate our model, we considered combinatorial circuits

presented in various related works, and we checked that

we were able to reproduce the same results. The circuit

failure probability computed with our model corresponds, for

example, with that reported in [17]; specifically, after 10000

simulation runs, we obtained a relative error with respect to

the reference results of 7 ·10−3. This cross-validation exercise

reinforced our confidence in the correctness of the model.

A. Analysis of a Circuit for CRC generation

As a case study, we consider the FPGA implementation of

a circuit for the generation of IEEE 802.3 CRC codes [18]. A

simplified schematic of a 4-bit data bus circuit that generates

8-bit CRC codes is shown in Figure 3. In the figure, d is the 4-

bit data bus, init, calc, and d_valid are control signals,

and update is a combinatorial network that computes the

next state for the upper output register. This example is only

meant to show how a system can be simulated by varying

several parameters.

The Verilog code for the circuit, available from the Xilinx

web site, was compiled for the Virtex 6 device into a netlist

with the Xilinx ISE tool. The resulting netlist has 8 input

signals, 12 output signals, 20 I/O buffers, 17 LUTs, and 19

flip-flops. The signal values during the experiments were as

follows: Control pins load_init and reset are always

low; calc is always high; d_valid switches between high

and low levels at each clock cycle; input pins d[3:0] are

high with probability Pi, where i is the index of the input pin.



Fig. 4. Failure probability vs. maximum number of faults that can be injected.

Fig. 5. Failure probability vs. input signal probability of data signals.

The following plots show some of the parameters that can be

varied and the measurements that can be taken. Results were

computed with a confidence level of 0.95, executing between

10
4 and 10

5 simulation runs. In a first scenario we calculated

the failure probability of the system for 8, 24 and 48 clock

cycles, letting F vary, setting pL and pB to 0.001 and Pi to

0.5. The resulting failure probability is shown in Figure 4.

In a second scenario we varied the input signal probabilities,

setting pL and pB to 0.001, and F to 5. Figure 5 shows the

failure probability of the circuit calculated for 8, 24 and 48

simulated clock cycles and 5 injectable faults.

V. CONCLUSIONS AND FUTURE WORK

We have described a simulation-based technique for failure

probability calculation of systems implemented in SRAM-

FPGA technology in presence of SEUs.

This technique has the high degree of flexibility, controlla-

bility and observability typical of simulation-based techniques.

The maximum number of faults and the failure probability of

each type of components can be specified, and the approach

can be applied to FPGA chips regardless of the particular

vendor and model.

The proposed approach also has a high accuracy that makes

it possible to reproduce in detail the failure behaviour of

a lookup table or a buffer affected by a SEU. Both purely

combinatorial and synchronous systems can be simulated,

taking into account circuits with reconvergent fanouts, which is

not possible in most analytical approaches. Single or multiple

event upsets can be injected during the simulation.

As further work, SEUs affecting user resources (such as

flip-flops) and routing will be studied.

REFERENCES

[1] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 305 – 316, September 2005.

[2] P. Graham et al., “Consequences and Categories of SRAM FPGA
Configuration SEUs,” in Proceedings of the 6th Military and Aerospace

Applications of Programmable Logic Devices (MAPLD’03), September
2003.

[3] L. Sterpone and M. Violante, “A new analytical approach to estimate
the effects of SEUs in TMR architectures implemented through SRAM-
based FPGAs,” IEEE Transactions on Nuclear Science, vol. 52, no. 6,
pp. 2217 – 2223, December 2005.

[4] E. Fuller et al., “Radiation Testing Update, SEU Mitigation, and
Availability Analysis of the Virtex FPGA for Space Re-configurable
Computing, presented at the IEEE Nuclear and Space Radiation Ef-
fects Conference,” in Proceedings of the 3rd Military and Aerospace

Programmable Logic Devices International Conference (MAPLD’00),
2000.

[5] M. Ceschia et al., “Ion beam testing of ALTERA APEX FPGAs,” in
Proceedings of the IEEE Radiation Effects Data Workshop, 2002, pp.
45 – 50.

[6] G. Asadi and M. B. Tahoori, “An Analytical Approach for Soft Error
Rate Estimation of SRAM-based FPGAs,” in Proceedings of the 7th

Military and Aerospace Programmable Logic Devices International

Conference (MAPLD’04), 2004.
[7] O. Heron et al., “On the reliability evaluation of SRAM-based FPGA

designs,” in Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL’05), August 2005, pp. 403
– 408.

[8] S. Krishnaswamy et al., “Accurate reliability evaluation and enhance-
ment via probabilistic transfer matrices,” in Proceedings of the confer-

ence on Design, automation and test in Europe (DATE ’05), March 2005,
pp. 282 – 287 Vol. 1.

[9] L. Sterpone and M. Violante, “A New Partial Reconfiguration-Based
Fault-Injection System to Evaluate SEU Effects in SRAM-Based FP-
GAs,” IEEE Transactions on Nuclear Science, vol. 54, no. 4, pp. 965
–970, August 2007.

[10] M. Violante et al., “Simulation-based analysis of SEU effects in SRAM-
based FPGAs,” IEEE Transactions on Nuclear Science, vol. 51, no. 6,
pp. 3354 – 3359, December 2004.

[11] P. Samudrala et al., “Selective Triple Modular Redundancy (STMR)
based single-event upset (SEU) tolerant synthesis for FPGAs,” IEEE

Transactions on Nuclear Science, vol. 51, no. 5, pp. 2957 – 2969, 2004.
[12] W. H. Sanders and J. F. Meyer, “Stochastic Activity Networks: formal

definitions and concepts,” Lectures on formal methods and performance

analysis: first EEF/Euro summer school on trends in computer science,
pp. 315–343, 2002.

[13] G. Clark et al., “The Möbius modeling tool,” in 9th Int. Workshop on

Petri Nets and Performance Models. Aachen, Germany: IEEE Computer
Society Press, September 2001, pp. 241–250.

[14] C. Bernardeschi et al., “Analysis of FPGAs using the SAN Formalism,”
in Proceedings of the Mosharaka International Conference on Commu-

nications, Networking and Information Technology (MIC-CNIT2010),
2010, in press.

[15] W. H. Sanders and J. F. Meyer, “A unified approach for specifying mea-
sures of performance, dependability, and performability,” in Dependable

Computing for Critical Applications, A. Avižienis et al., Eds. Springer-
Verlag Heidelberg, 1991, pp. 215–237.

[16] “ISE Design Suite Software Manuals and Help,” http://www.xilinx.com/
support/documentation/sw manuals, 2010.

[17] G. Asadi and M. B. Tahoori, “An Accurate SER Estimation Method
Based on Propagation Probability,” in Proceedings of the conference on

Design, Automation and Test in Europe (DATE ’05). Washington, DC,
USA: IEEE Computer Society, 2005, pp. 306–307.

[18] C. Borrelli, “IEEE 802.3 Cyclic Redundancy Check,” application note:
Virtex Series and Virtex-II Family, XAPP209 (v1.0), March 23, 2001,
Xilinx, Inc.


