Tools Design for the Engineering of Free Form Envelopes

Eng. Davide Tonelli

Ph.D. Student in Civil Engineering Techniques EMAIL: davide.tonelli@dic.unipi.it WEBSITE: www.dic.unipi.it/davide.tonelli/

University of Pisa - IT

Doctoral School of Engineering "Leonardo da Vinci"

5 April 2013

SUPERFICI LIBERE SI ...

Le **forme libere** oggi rappresentano nel campo dell'architettura l'espressione più moderna degli **involucri edilizi evoluti** (coperture e facciate, che nei casi più elaborati divengono indistinguibili).

... MA NON TROPPO

Gli **involucri** sono strutture leggere: sono **strutture resistenti per forma** (e non "per materiale").

La loro resistenza discende da un accurato studio della forma, che deve essere ottimale per certe condizioni di carico - spesso il *peso proprio*.

FORM FINDING

E' il processo di ricerca della *superficie ottimale "resistente per forma"*. A partire dagli anni '60 sono stati introdotti alcuni metodi algoritmici per la ricerca di questa configurazione ottimale.

METODO

Siamo nel campo dell'analisi di strutture che esibiscono "comportamento geometricamente non lineare", ovvero strutture molto deformabili per le quali l'analisi deve essere condotta iterativamente - imponendo ad ogni passo l'equilibrio sulla configurazione deformata (aggiornata).

TRANSIENT STIFFNESS METHOD

 $\{P\}$ - vettore dei carichi applicati

$$\{\tilde{P}\}_{k+1} = [K]_{k+1} \{\delta\}_{k+1}$$
 - vettore dei carichi nodali reattivi

$$\{R\}_{k+1} = \{P\} - \{\tilde{P}\}_{k+1}$$
 - vettore dei carichi nodali NON equilibrati

$$\begin{split} \{\Delta\delta\}_{k+1} &= [K]_{k+1}^{-1} \{R\}_{k+1} \text{ -} \\ &\text{incremento del vettore degli} \\ &\text{spostamenti all'iterazione } k+1. \end{split}$$

 $[K]_{k+2}$ - matrice di rigidezza al passo k+2 - può essere calcolata aggiornando la geometria con $\{\Delta\delta\}_{k+1}$.

Quando $||\{R\}|| \to 0$ siamo arrivati all'equilibrio

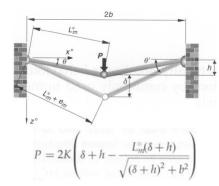


Figure: Comportamento Geometricamente Non Lineare - Grandi Spostamenti

FORCE DENSITY METHOD

$$\sum_{i=1}^{4} T_{i} \frac{(x_{i} - x_{5})}{L_{i}} = P_{x}$$
 - in x, y, z

 L_i dipende a sua volta da x_i secondo una radice: l'eq.ne è non lineare nelle coordinate dei nodi.

Si introduce A PRIORI il **Force Density Ratio**: $q_i = \frac{T_i}{L_i}$ - il sistema di eq.ni diventa lineare.

$$\sum_{i=1}^{4} q_i(x_i - x_5) = P_x$$
 - in x, y, z

Soluzione del sistema lineare = Configurazione di Equilibrio

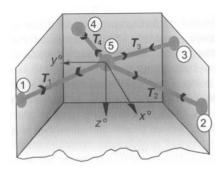


Figure: Non si possono computare "superfici minime", ma solo superfici in equilibrio statico

DYNAMIC RELAXATION METHOD

$$P_{ji} = K_{ji}\delta_{ji} + C\dot{\delta}_{ji} + M_{ji}\ddot{\delta}_{ji}$$
 - equazione del moto

$$\tilde{P}_{ji} = K_{ji}\delta_{ji}$$
 - vettore dei carichi nodali reattivi

$$R_{ji} = P_{ji} + \tilde{P}_{ji}$$
 (1) - vettore dei carichi nodali NON equilibrati

"Smorzamento Cinetico" - C = 0:

$$R_{ji}=M_{ji}\frac{\dot{\delta}_{ji}^{n+\frac{1}{2}}-\dot{\delta}_{ji}^{n-\frac{1}{2}}}{\Delta t}$$

$$\dot{\delta}_{ji}^{n+\frac{1}{2}} = \dot{\delta}_{ji}^{n-\frac{1}{2}} + \frac{R_{ji}^n}{M_{ji}} \Delta t$$
 (2)

$$\delta_{jj}^{n+1} = \delta_{jj}^{n} + \dot{\delta}_{jj}^{n+\frac{1}{2}} \Delta t \quad (3)$$

$$(1) + (2) + (3)$$
 finché $||R|| \to 0$

$$ji - j = nodo, i = direzione$$

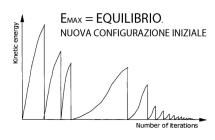


Figure: "Smorzamento Cinetico" -Azzeramento Iterativo dell'Energia Cinetica Globale del sistema

GSA - ARUP - 1970?

Software **CAE** di analisi strutturale, 3 metodi di form finding distinti: "normal property", "dynamic relaxation", "force density".

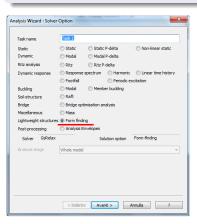


Figure: Form Finding, Step 1

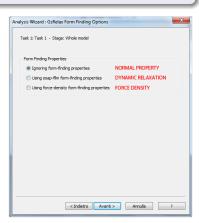


Figure: Form Finding, Step 2

RhinoVAULT - Block, Ph.D. Thesis MIT - 2009

Plugin per Rhino **CAD**, form finding via "force density method". E' macchinoso e poco efficace - basato sulla statica grafica.

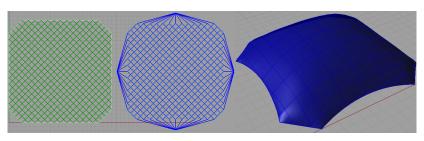


Figure: RhinoVault

SMARTForm - Buro Happold, Team SMARTGeometry - 2012

Plugin per Rhino **CAD**, form finding via "dynamic relaxation method". E' estremamente intuitivo e super efficiente - eccezionale.

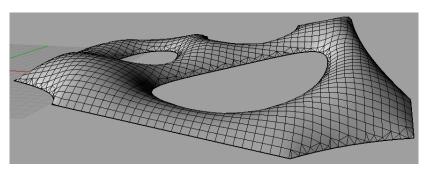


Figure: SMARTForm

Efficienza dei Pattern a Confronto

Un'analisi FEM ha evidenziato i punti di forza del pattern esagonale:

- 1 maggior moltiplicatore di collasso per instabilità
- comportamento resistente tridimensionale non ci sono vie di carico preferenziali - il materiale è sfruttato in maniera più uniforme

Figure: $\lambda_c = 120$

Figure: $\lambda_c = 70$

Figure: $\lambda_c = 140$

Pattern Esagonale

Abbiamo visto che il *pattern esagonale* costituisce il punto d'arrivo di un processo di ottimizzazione globale di un *pattern quadrilatero con T-Joints*.

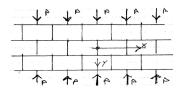
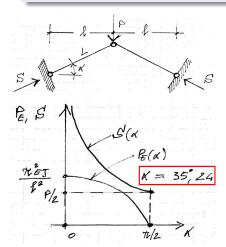


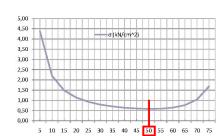
Figure: T-Joint Pattern

Figure: Honeycomb Pattern

Pattern Esagonale

La ricerca analitica dell' angolo di inclinazione ottimale delle aste confluenti nel T-Joint restituisce $\alpha=35^\circ$, mentre quella numerica restituisce $\alpha=50^\circ$ ma con un debole peggioramento per $30^\circ \le \alpha \le 50^\circ$.





In entrambi i casi l'ottimo è prossimo all'esagono regolare!

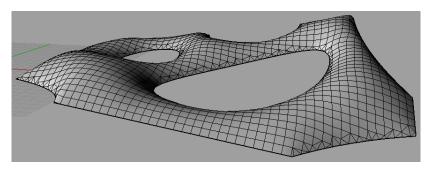


Figure: SMARTForm

- Possiamo fare GIÁ il Remeshing di questo verso facce esagonali isotrope?
- 2 Possiamo imporre la planarità delle facce?
- E la singola curvatura?

Un'azienda locale specializzata in installazioni decorative in bambù - "Il Bambuseto" - ha realizzato vari progetti con superfici complesse discretizzate mediante pattern esagonale.

Figure: Le realizzazioni de "Il Bambuseto"

L'ideatrice delle realizzazioni, dopo aver visto il sito del *GRIFF* e le tematiche di cui si occupa, vorrebbe organizzare un incontro. **Accettiamo?**