
Introduction
Problem
Solution

References

On the problem of decomposing grasp and

manipulation forces in multiple whole-limb

manipulation

Daniele Genovesi
danigeno@hotmail.com

Interdepartmental Research Center "E.Piaggio"

Faculty of Automation Engineering

University of Pisa

23/05/2011

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

INDEX

1 Introduction

2 Problem Formulation

3 Problem Solution
Quasi-static model
Grasp forces decomposition
Mathematics
Example
Article
Skew

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

ROBOTICS

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

MANIPULATION

MANIPULATION

GRASP FORCES DECOMPOSITION

Form Closure
Force Closure

Power Grasp

SYSTEMS STRUCTURE

Cooperating Multiple Limb

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

MANIPULATION

MANIPULATION

GRASP FORCES DECOMPOSITION

Form Closure
Force Closure

Power Grasp

SYSTEMS STRUCTURE

Cooperating Multiple Limb

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

MANIPULATION

MANIPULATION

GRASP FORCES DECOMPOSITION

Form Closure
Force Closure

Power Grasp

SYSTEMS STRUCTURE

Cooperating Multiple Limb

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

MANIPULATION

MANIPULATION

GRASP FORCES DECOMPOSITION

Form Closure
Force Closure

Power Grasp

SYSTEMS STRUCTURE

Cooperating Multiple Limb

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

MANIPULATION

MANIPULATION

GRASP FORCES DECOMPOSITION

Form Closure
Force Closure

Power Grasp

SYSTEMS STRUCTURE

Cooperating Multiple Limb

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

MANIPULATION

MANIPULATION

GRASP FORCES DECOMPOSITION

Form Closure
Force Closure

Power Grasp

SYSTEMS STRUCTURE

Cooperating Multiple Limb

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

PROBLEM DEFINITION

Problem

Decomposing the system of contact forces exerted between the
robot limbs and the object in order to apply a desired resultant
force on the object (and/or to resist external disturbances)
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BACKGROUND DEFINITIONS

The problem of controlling contact forces in a multiple manipulation
system such as a hand, a pair of cooperating robot arms, or a legged
vehicle, has been traditionally considered in the assumption that
every single �nger (arm, or leg) has full mobility in its task space

w = −G̃ t̃

⇓
t̃ = G̃Rw − Ax

w = (f T ,mT )T ∈ R6

G ∈ R6×t

A ∈ Rt×h

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

BACKGROUND DEFINITIONS

Non defective systems

Most known grasp optimization techniques can be formulated
by de�ning a cost function V (x) and constraint functions
gi (x) as

Find x̂ such that

V (x̂ ;w) is minimum;

gi(x̂) ≤ 0

1 The cost and constraint functions usually are designed so as to
realize the goals of avoiding contact slippage and minimizing
consumption of power in the joint actuators

2 Finally t̂ is applied by the �ngers under some type of

force control technique
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DEFECTIVE SYSTEMS

Fundamental question

What internal forces at equilibrium are modi�able at will,

when inputs are joint torques?
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DEFECTIVE SYSTEMS

Fundamental question

What internal forces at equilibrium are modi�able at will, when
inputs are joint torques?

De�nition

Grasping systems ( or situation ) where there is no guarantee that
the optimal contact forces can actually be realized by the robot.
In other words, complete (output function) controllability of
internal forces may not be achieved in those cases.

Quasi-static analysis ⇒ to answer the fundamental question
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MODELING THE SYSTEM

Preliminary assumptions

1 The model of the cooperating manipulation system we assume
is comprised of

an arbitrary number of robot �ngers (i.e., simple chains of
links connected through revolute or prismatic joints)
an object, which is in contact with some or all of the links

2 We assume that the location of the contact point is

known, by either planning or sensing
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According to standard conventions

Fixed base reference frame B

local reference frames Ej , �xed to the j-th robot link

origin of Ej is placed on the j-th joint axis
z-axis of Ej is aligned with the j-th joint axis
x-axis of Ej is aligned with the line joining oj with oj+1

All vectors are expressed in base frame unless explicitly noted

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

Quasi-static model
Forces Decomposition
Math
Example

Object balance

Contact wrench
t̃ = (pT

1
, . . . , pTn ,mT

1
. . .mT

n )T

t̃ ∈ Rn

Balance equation

w = −G̃ t̃

Grasp matrix

G̃ =

(
I3 I3 . . . I3

S(c1) S(c2) . . . S(cn)
O3×3n

I3 I3 . . . I3

)

S(ci ) is the cross-product matrix for ci , hence the
skew-symmetric matrix such that S(ci )pi = ci × pi
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Manipulation system balance

τ = J̃T t̃; J̃ ∈ R6n×q

Defective systems

q ≥ rank(J) < t

J matrix

J̃
T =


D1,1 D2,1 . . . Dn,1
D1,2 D2,2 . . . Dn,2

.

.

.

.

.

.

.

.

.

.

.

.
D1,n D2,n . . . Dn,n

L1,1 L2,1 . . . Ln,1
L1,2 L2,2 . . . Ln,2

.

.

.

.

.

.

.

.

.

.

.

.
L1,n L2,n . . . Ln,n



Di,j =


O1×3 if the i-th contact force does not a�ect the j-th joint;

zTj for prismatic j-th joint;

zTj S(ci − oj ) for revolute j-th joint;

Li,j =


O1×3 if the i-th contact torque does not a�ect the j-th joint;

O1×3 for prismatic j-th joint;

zTj for revolute j-th joint;
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Contact constraint

To incorporate contact constraints in the model, relative
displacements between the object and the links at the

contact points must be considered. Therefore, we introduce n

reference frames oCi �xed w.r.t. the object and centered in ci ; and
n reference frames mCi , each �xed w.r.t. the link that touches the
object in ci , and centered in ci

∆ox = G̃T∆u

∆mx = J̃∆q

Daniele Genovesi: danigeno@hotmail.com GRASP
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Contact type

Contact constraints impose that certain components of the relative
displacements ∆ox −∆mx are selectively opposed by reaction
forces, depending upon the type of contact:

1 Complete constraint

2 Soft �nger

3 Hard �nger w/h friction

4 Hard �nger w/o friction

Imposing constraints

H(∆mx −∆ox) = 0
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Selection Matrix H

The selection matrix H is build by removing all the zero rows from :

H̃ = diag(FS1, . . . ,FSn,MS1, . . . ,MSn)

Contact Type Force Selector FSi Moment Selector MSi

Point Contact w/o Friction zTi O
1×(d−s)

Point Contact w/h Friction (hard-�nger) Is O
1×(d−s)

Planar Contact w/o Friction (Complete-
Constraint)

Is Id−s

3D Soft Finger I3 zTi
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Virtual spring

All relationship considered so far are valid for a rigid-body model of the robot

system. However, the force distribution problem for general systems is

underdetermined. To solve the indeterminacy, the rigid body model is

inadequate, and a more accurate model, taking into account the elastic

elements that are involved in the system, has therefore to be considered. This

can be conceptually done by introducing a set of "virtual springs" interposed

between the links and the object at the contact points

Kse1

Kse2

Kse3

Kstr,j

Object

Elastic relationship

Cstr t = H(∆m
x −∆o

x) + t0

t ∈ Rt di�ers from t̃ = H
T
t ∈ R6n
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controlled reference position

effective joint position

torque generated

effective joint position

force generated

Joint actuation-control model

Cseτ = (qr − q)
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From the above presented equations it holds

y

x



w = −G̃ t̃

τ = J̃T t̃

Cstr t = H(∆mx −∆ox) + t0
t̃ = HT t

∆ox = G̃T∆u

∆mx = J̃T∆q

Cseτ = (qr − q)
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QUASI-STATIC MODEL

De�ning

G = G̃HT

J = HJ̃

t̃ = HT t

Kstr
i

Kse1

Kse2

Kse3

Object

C1

C2

C3

mC1
oC1

"To study" model 
w = −Gt
τ = JT t

Cstr t = (J∆q − GT∆u)
Cseτ = (qr − q)

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

Quasi-static model
Forces Decomposition
Math
Example

QUASI-STATIC MODEL

De�ning

G = G̃HT

J = HJ̃

t̃ = HT t

Kstr
i

Kse1

Kse2

Kse3

Object

C1

C2

C3

mC1
oC1

"To study" model 
w = −Gt
τ = JT t

Cstr t = (J∆q − GT∆u)
Cseτ = (qr − q)

Daniele Genovesi: danigeno@hotmail.com GRASP



Introduction
Problem
Solution

References

Quasi-static model
Forces Decomposition
Math
Example

GRASP FORCES DECOMPOSITION

Fundamental question

What internal forces at equilibrium are modi�able at will, when
inputs are joint torques?

t̃ = G̃Rw − Ax =⇒
{
t̃ps = G̃Rw

t̃omo = Ax
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The sti�ness matrix K


w = −Gt
τ = JT t

Cstr t = (J∆q − GT∆u)
Cseτ = (qr − q)

{
δτ = JT δt
Cseδτ = (δqr − δq)

⇒ CseJ
T δt = (δqr − δq)

{
Cstrδt = (Jδq − GT δu)
JCseJ

T δt = J(δqr − δq)
⇒ (Cstr + JCseJ

T )δt = Jδqr − GT δu

Sti�ness matrix

K = [Cstr + JCseJ
T ]−1

Daniele Genovesi: danigeno@hotmail.com GRASP
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Current system 
δw = −Gδt
δτ = JT δt
δt = K (Jδqr − GT δu)
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PARTICULAR SOLUTION

The particular solution t̃ps = G̃Rw is not unique, since G in general
admits in�nitely many right inverses. However, we expect a unique
solution to the following Force distribution problem.

Force distribution problem

Assume that an object, at equilibrium under an external load w0 and
contact forces t0, is subject to an additional load w , while all other
parameters are kept constant.
Determine the values of contact forces at the new equilibrium.

Force distribution problem solution

The solution to the force distribution problem is unique, and is given by

t = GR
Kw + t0

where GR
K = KGT (GKGT )−1
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HOMOGENEOUS SOLUTION

Internal forces are self-balanced contact forces that have no e�ect on the
global motion of the manipulated object but signi�cantly a�ect the grasp
stability, have been identi�ed with homogeneous solutions of w = −Gt.
In mathematical terms, internal forces are elements of the subspace
N(G ) and hence R(A). We propose a decomposition of the homogeneous
subspace in a subspace Fhr of active, internal contact forces and a
subspace Fho of passive (preload), internal contact forces.

Internal forces

Internal forces =⇒
{
Active internal forces
Passive internal forces

Active internal Forces

t = Ey

where E = (I − GR
KG )KJ

Passive internal forces

t = Pz

where P = R(A) ∩ N(JT )
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PARTICULAR SOLUTION

Force distribution problem

Assume that an object, at equilibrium under an external load w0

and contact forces t0, is subject to an additional load w , while all
other parameters are kept constant.
Determine the values of contact forces at the new equilibrium.

t = −KGT∆u + t0

w + w0 = GKGT∆u − Gt0

Now assuming G full row rank and K invertible

Particular solution

t = −KGT (GKGT )−1w + to = GR
Kw + t0
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HOMOGENEOUS SOLUTION

Active internal forces

Consider a system in the equilibrium con�guration described by w0,
q0, to, and let δu be a displacement of the object which is
compatible with all the constraints imposed by contacts with the
robot links (i.e., δu is a virtual displacement of the object).
Applying the P.V.W.

Principle of Virtual Work

The principle that the total work done by all real/virtual forces
acting on a system in static equilibrium is zero for any virtual/real
displacement from equilibrium which is consistent with the
constraints of the system.
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HOMOGENEOUS SOLUTION

...applying the P.V.M.

wT
0 δu = tT0 GT δu = 0, ∀δu

By imposing joint displacements ∆qr , the equilibrium
con�guration is perturbed. A new equilibrium under the same
external force w0 will be reached on condition that the P.V.W.
is satis�ed

wT
0 δu = (t0 + ∆t)TGT δu = ∆tTGT δu = 0

Remembering δt = K (Jδqr − GT δu)

∆qTr J
TKTGT δu = ∆uTGKTGδu, ∀δu

GKJ∆qr = GKGT∆u ⇒ ∆u = (GKGT )−1GKJ∆qr

Active internal forces

∆t = (I − GR
KG )KJ∆qr and so

t = Ey with E basis of R(I − GR
KG )KJ)
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A simple, simple example

Structure

Let 's examine the example reported below

c1
(0,1,0)

c2
(1,1,0)

O1
(0,0,0)

y

x

We have to build:

G matrix

J matrix

H matrix

K matrix
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A simple, simple example

G matrix

G̃ =

(
I3 I3 . . . I3

S(c1) S(c2) . . . S(cn)
O3×3n

I3 I3 . . . I3

)


1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 −1.0 0.0 1.0 0.0 0.0 1.0 0.0

−1.0 0.0 0.0 −1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0


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A simple, simple example

J matrix

J̃
T =


D1,1 D2,1 . . . Dn,1
D1,2 D2,2 . . . Dn,2

.

.

.

.

.

.

.

.

.

.

.

.
D1,n D2,n . . . Dn,n

L1,1 L2,1 . . . Ln,1
L1,2 L2,2 . . . Ln,2

.

.

.

.

.

.

.

.

.

.

.

.
L1,n L2,n . . . Ln,n



Di,j =


O1×3 if the i-th contact force does not a�ect the j-th joint;

zTj for prismatic j-th joint;

zTj S(ci − oj ) for revolute j-th joint;

Li,j =


O1×3 if the i-th contact torque does not a�ect the j-th joint;

O1×3 for prismatic j-th joint;

zTj for revolute j-th joint;

J
T =

[
−1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

]
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A simple, simple example

Selection Matrix H

The selection matrix H is build by removing all the zero rows from :

H̃ = diag(FS1, . . . ,FSn,MS1, . . . ,MSn)

Contact Type Force Selector FSi Moment Selector MSi

Point Contact w/o Friction zTi O
1×(d−s)

Point Contact w/h Friction (hard-�nger) Is O
1×(d−s)

Planar Contact w/o Friction (Complete-
Constraint)

Is Id−s

3D Soft Finger I3 zTi
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A simple, simple example

H =



1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.0 0.0 0.0


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A simple, simple example

K matrix

Cstr =



0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01



Cser = 0.01
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K matrix

K = [Cstr + JCseJ
T ]−1 =



20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 20.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 20.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0


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Forces decomposition subspaces

Particular solution

PS =



−0.45455 0.0 0.0 0.0 0.0 0.0

1.0 −1.0 0.0 0.0 0.0 1.0

0.0 0.0 −1.0 0.0 −1.0 0.0

−0.54545 0.0 0.0 0.0 0.0 0.0

−1.0 0.0 0.0 0.0 0.0 −1.0

0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.50000 −0.50000 0.0 0.0

0.0 0.0 −0.50000 0.50000 0.0 0.0


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Forces decomposition subspaces

Homogeneous solution

E =



0.5

0.0

0.0

−0.5

0.0

0.0

0.0

0.0



P =



0.0

0.0

0.0

0.0

0.0

0.0

0.3

0.3


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Grazie per l'attenzione..
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