Fisica Generale per Ingegneria Meccanica

Compito del 28/01/05

Esercizio 1

Un ciclista può percorrere delle traiettorie circolari intorno ad un punto fisso, su di un piano orizzontale. Il coefficiente di attrito tra bici e piano, a distanza r dal centro, vale $\mu=\mu_0(1-r/R)$ per r<R, con μ_0 ed R costanti note. Lo stesso coefficiente vale 0 per r>R. Trovare il raggio della traiettoria per la quale il ciclista può sviluppare la massima velocità. Trovare quanto vale detta velocità

Esercizio 2

Due piccoli dischi identici, ognuno di massa m, giacciono su un piano orizzontale liscio. I dischi sono collegati da una molla leggera, a riposo, di lunghezza propria L_0 e rigidezza k. Ad un certo momento uno dei dischi viene messo in moto in una direzione orizzontale, perpendicolare alla molla, con velocità V_0 . Si definisca la elongazione della molla E come il rapporto tra il suo allungamento e la lunghezza a riposo ($E=\Delta L/L_0$). Si trovi la massima elongazione della molla durante il moto nel problema dato, sapendo che E<<1.

Esercizio 3

Due cariche q_1 e q_2 , di segno opposto e valore assoluto diverso, sono ferme e distanti D tra loro. La superficie equipotenziale V=0 di questo sistema è una sfera. Trovarne la posizione del centro ed il raggio.