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Abstract— Coordinated Scheduling (CS) is used to mitigate 

inter-cell interference in present (4G) and future (5G) cellular 

networks. We show that coordination of a cluster of nodes can be 

formulated as an optimization problem, i.e., placing the Resource 

Blocks (RB) in each node’s subframe with the least possible over-

lapping with neighboring nodes. We provide a clever formula-

tion, which allows optimal solutions to be computed in clusters of 

ten nodes, and algorithms that compute good suboptimal solu-

tions for clusters of tens of nodes, fast enough for a network to 

respond to traffic changes in real time. This allows us to assess 

the relationship between the scale at which CS is performed and 

its benefits in terms of network energy efficiency and cell-edge 

user rate. Our results, obtained using realistic power, radiation 

and Signal-to-Interference-and-Noise-Ratio (SINR) models, show 

that optimal CS allows a significant protection of cell-edge users. 

Moreover, this goes hand-in-hand with a reduction in the num-

ber of allocated RBs, which in turn allows an operator to reduce 

its energy consumption. Both benefits actually increase with the 

size of the clusters. The evaluation is carried out in both a 4G and 

a foreseen 5G setting, using different power models, system 

bandwidths and SINR-to-datarate mappings. 

Keywords—Coordinated Scheduling, energy-efficiency, cellular 

networks, inter-cell interference, 5G 

I.  INTRODUCTION 

Inter-cell Interference (ICI) is one of the major causes of 

performance degradation in the downlink of 4G cellular net-

works, where all neighboring cells share the same spectrum. 

5G networks will be denser and with higher traffic demands, 

which will only exacerbate the problem. User Equipments 

(UEs) suffering interference from nearby eNodeBs (eNBs) will 

have a lower Signal-to-Interference-and-Noise Ratio (SINR), 

hence a lower Channel Quality Indicator (CQI). This means 

that an eNB will employ more robust modulations, carrying 

fewer bits per Resource Block (RB), to serve these UEs. There-

fore, the network will be able to carry less traffic, and will con-

sume more energy – which is proportional to the number of RB 

allocated per Transmission Time Interval (TTI) – to carry the 

same traffic. Moreover, energy efficiency is considered an im-

portant design goal for future 5G system [10]. Recent EU-

funded research projects (e.g. METIS [12], Flex5Gware [11]), 

in fact, are considering energy-efficiency as a requirement and 

setting precise targets on it. 

 One of the techniques used to reduce ICI is Coordinated 

Scheduling (CS), by which neighboring eNBs agree to use dif-

ferent RBs, i.e., different frequencies, at the same TTI. CS 

techniques can be either static or dynamic. In static CS 

schemes (e.g., [2]-[3]), the partitioning of resources among 

neighboring eNBs is fixed, with a long-term perspective. Typi-

cal cases are frequency reuse schemes. A static partitioning is 

highly inflexible, especially when the traffic varies at a fast 

pace: in fact, no single cell is ever allowed to use the whole 

spectrum, even if the neighboring ones are unloaded, which 

leaves resources underutilized. A typical example is a single 

UE roaming through unloaded neighboring cells, no one of 

which is able to allocate its entire bandwidth to it. On the other 

hand, dynamic CS schemes have been proposed, e.g., [4]-[8]. 

Some of these are not standard-compatible, since they assume 

that the eNBs possess information which is not available in the 

current 4G standards, and would be costly to introduce in the 

next-generation 5G ones: for example, they assume that UEs 

can report the detail of the contributions of the single interfer-

ers to the SINR. Some dynamic scheme (e.g., [6],[8]), moreo-

ver, assumes that a central entity is in charge of a cluster of 

cells, and that it both receives per-UE information (i.e., buffer 

and CQI) and makes per-cell schedules on each TTI. Such 

schemes cannot scale with the number of UEs or cells, since 

both the amount of information to be conveyed and the algo-

rithm complexity are infeasibly high. Under these settings, in 

fact, achieving an optimal result (i.e., a scheme that guarantees 

the maximum throughput on each TTI) is impossible in prac-

tice, since this requires solving to optimality an optimization 

problem that is too complex for a 1ms-timeframe [8], [9].  

Between the two extremes of a static approach and a per-

TTI centralized multicell scheduling lies a largely unexplored 

middle ground, where CS can still be run dynamically, but at 

longer periods than the TTI. The outcome of CS can then con-

strain the scheduling decisions of the coordinated nodes, taken 

on each TTI, for a whole period. This is the approach pursued 

in this paper, designed and prototyped within the framework of 

the Flex5Gware EU-5GPPP project [11]. More in detail, a 

global scheduler (GS), coordinating a cluster of nodes, runs a 

CS algorithm at periods of 100-1000 TTIs. The outcome of CS 
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is an allocation mask, i.e. a list of RBs where each node in the 

cluster can schedule its UEs. That list is compiled so that UEs 

within a cell are protected from their highest interferers as 

much as possible. The individual nodes periodically record and 

send to the global scheduler the number of RBs that they need 

to carry all their traffic. Moreover, nodes are still in charge of 

per-TTI scheduling, unlike most Coordinated Multipoint 

(CoMP) solutions available in the literature, which makes the 

complexity of our CS independent of the number of UEs, 

hence more scalable.  

A period in the range of 100-1000 TTIs is small enough for 

a network to be responsive to traffic changes. However, it is 

also large enough for the CS problem to be formulated as an 

optimization problem which can be solved at optimality, at 

fairly large scales (i.e., tens of nodes). While the natural way to 

formulate a CS problem would be as a Quadratic Semi-

Assignment Problem (QSAP, [17]), which is inefficient, we 

devise instead a non-intuitive pattern-based formulation. The 

ensuing Integer Linear Program (ILP) can be solved at optimal-

ity in hundreds of milliseconds at scales of up to ten nodes. 

Larger scales can be reached (at comparable solution times) by 

adopting heuristic techniques, such as price-and-branch, where 

column generation can be handled in different ways, among 

which brute-force enumeration or the use of a general-purpose 

solver. Moreover, a second layer of coordination can easily be 

superimposed, working among neighboring clusters to mitigate 

cluster-border interference, which allows our CS to scale up to 

hundreds of nodes.   

The benefits of our optimal dynamic CS are twofold: on 

one hand, it is effective in protecting cell-edge UEs from the 

interference of nearby cells. We show that their SINR increases 

considerably when CS is enforced. On the other hand, protect-

ing cell-edge UEs actually frees a considerable amount of RBs 

at the nodes, namely those RBs that would otherwise be em-

ployed to guarantee a suitable data rate to UEs with poor chan-

nel conditions. This, in turn, increases the number of bits per 

RB in the whole network, making it more energy-efficient. An 

improved energy efficiency naturally translates to a reduced 

power consumption for the same network load. The above ben-

efits are evident when the system is compared to both an unco-

ordinated network and one with static coordination, e.g. fre-

quency reuse schemes. Moreover, they are confirmed in both a 

4G and a foreseen 5G deployment, with increased data rates 

and improved power models, and in both a macro-only and a 

heterogeneous scenario, where micro cells are added to the co-

ordinated scheduling problem. Last, but not least, it is worth 

noting that our dynamic CS framework is fully compliant with 

the current 4G standard. In fact, it has been implemented and 

demonstrated in a live prototype of an LTE cellular network 

[13]-[14]. 

The contributions of this paper are the following: 

- A framework that makes dynamic CS possible, by 

splitting the scheduling between a GS and the individ-

ual nodes of a cluster; 

- The design of an exact and two heuristic intra-cluster 

coordination algorithms to be run at the GS, and a heu-

ristic inter-cluster coordination algorithm; 

- An evaluation of the costs (in terms of running time 

and communication overhead) and benefits (in terms of 

reduced power consumption and improved SINR) of 

dynamic CS as a function of the cluster size, in 4G and 

towards-5G scenarios. 

The rest of the paper is organized as follows: Section II de-

scribes the hypotheses of the system model and states the prob-

lem. Section III reviews the related work. In Section IV we de-

scribe our CS models, and in Section V we evaluate the CS 

performance at various scales. Section VI concludes the paper 

and highlights directions for future work. 

II. SYSTEM MODEL AND PROBLEM STATEMENT 

We consider the downlink (DL) direction of a LTE-

Advanced (LTE-A) cellular network, which is more critical 

than the uplink (UL) one in terms of both carried load and in-

frastructure power consumption. UEs are served by eNBs and 

transmissions are arranged in time slots of 1ms, called Trans-

mission Time Intervals (TTIs). During a TTI, nodes allocate 

subframes, i.e. vectors of M RBs to its associated UEs. Each 

RB is a set of contiguous frequency resources allocated to one 

UE, which carry a fixed number of symbols. The latter trans-

lates to different amounts of bits according to the modulation 

used, which in turn depends on the quality of the air channel, 

i.e. on the SINR perceived by UEs. In order to allow the eNB 

to select the appropriate modulation for transmission, UEs re-

port a quantized indication of their SINR (called a Channel 

Quality Indicator, CQI) to the eNBs periodically. Since all 

nodes share the same spectrum, they can interfere with each 

other.  

We consider a large-scale multicell cellular network, a por-

tion of which is shown in Figure 1. Although the results in the 

paper do not depend on a particular network layout, hereafter 

we often represent cells as hexagons for simplicity, and without 

any loss of generality. Cells host a macro node that provides 

umbrella coverage within them. Moreover, they may have mi-
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Figure 1 – Nodes in a hexagon tessellation. 



cro nodes as well to provide additional capacity. The term “mi-

cro” generally refers to a smaller cell, embedded within a mac-

ro, regardless of the actual transmission power.  

An arbitrary number of UEs is deployed in the floorplan. 

Each one requests a certain data rate and is associated to one 

eNB. In particular, we assume that a UE associates to the node 

(either macro or micro) from which it perceives the highest 

SINR, among those covering the cell where they are deployed. 

Since CS is intended to run over a timespan larger than the 

TTI, we are interested in computing the average SINR of UEs. 

Call 
,x uP  the power received by u  from node x  (which de-

pends on the distance and angle between them, the propagation 

model and the transmitting power of x ). Then, the average 
SINR of UE u  is: 

 
,
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e ue

u ov

G x u e xx e
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N P p
≠

=
+ ⋅∑

,  (1) 

where 
GN  is the Gaussian noise and 

,

ov

e xp  is the probability 

that u, served by node e, suffers interference from x on a RB. 

This implies that each UE has the same probability of using 

any of the RBs allocated by its node, which is reasonable given 

the long timespan. The term 
,

ov

e xp  depends on how allocation 

has been performed by nodes e and x, i.e., which RBs have 

been allocated. It can be computed as follows. Call 
e
n  and 

x
n  

the average number of RBs required to nodes e and x for serv-

ing their respective UEs, on each TTI. Define 
,e x∆  as the 

number of overlapping RBs in the allocations of the two nodes. 

This value depends on the allocation scheme employed at each 

node. Two possible modes, which we call first fit (FF) and 

random (R) are exemplified in Figure 2, which represents the 

RB allocation of two arbitrary nodes e and x. Shaded blocks 

denote the allocated RBs and dashed ones represent overlap-

ping blocks, i.e. those allocated by both nodes. With FF, RBs 

are allocated starting from the first position, hence the overlap-

ping RBs are the maximum possible, i.e. ( ), min ,e x x en n∆ = . 

Although FF is the most inefficient approach from an interfer-

ence perspective, practical implementations of eNBs often em-

ploy this strategy. For instance, OpenAirInterface nodes [15]-

[16] work like this. On the other hand, a node implementing 

the R scheme selects RBs in a random fashion. With some 

straightforward computations, the average number of over-

lapping RBs is 
,e x x en n M∆ = ⋅ . This quantity is smaller than 

with FF, especially at low network loads, i.e. when few RBs 

are allocated. 

Given the number of overlapping RBs, the probability that 

a UE served by e suffers interference from x on a RB is 

, ,

ov

e x e x ep n=∆ . Equation (1) becomes: 
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Thus, the goal of CS is to reduce 
,e x∆  for pairs of nodes 

that generate a high interference on each other’s UEs.  

Based on the above discussion, the obvious approach to 

CS would be to select RB placement in the subframes so as to 

maximize the sum of the average SINR across all UEs. How-

ever, this solution suffers from non-trivial scalability and mod-

eling difficulties. In fact, a cluster of coordinated nodes may 

handle hundreds of UEs in practical cases, whereas equation 

(1) is non-linear and non-convex in variables 
,e x∆  and 

e
n . This 

makes the CS problem hard to solve even for small-size clus-

ters. Moreover, there is an even bigger obstacle: this approach 

requires that UEs report the received powers 
,x uP  for all nodes 

x in the coordinated cluster. In real LTE networks, UEs’ report-

ing is limited to the CQI value and there is no mean for the 

node to grasp how that number was obtained. Thus, (1) cannot 

be computed, except at the UEs themselves. 

III. RELATED WORK 

In the literature, ICI has been widely studied and several 

works have been proposed. They can be categorized in static 

and dynamic approaches.  

Static schemes allow long-term, network-wide ICI man-

agement. Frequency Reuse (FR) schemes [2]-[3] are in this 

category: the available bandwidth is equally divided into RF  

portions ( RF  being the reuse factor) and one eNB is allowed 

to use 1 RF  of the bandwidth. A tradeoff between interference 

and number of usable resources can be found by varying the 

value of RF . Although this approach can be used for very 

large scales, it is highly inflexible. In fact, if the load between 

neighboring cells is unbalanced, it occurs that one eNB may be 

overloaded, whereas its neighbors have unused RBs. Fractional 

Frequency Reuse (FFR) can be employed to reduce the amount 

of unemployed bandwidth, since a part of it is shared among all 

eNBs to serve cell-center UEs (i.e., with a reuse factor of one), 

whereas only the remaining part is partitioned into RF  por-

tions and exploited for serving cell-edge UEs. FFR mitigates, 

but does not solve entirely, the problem described above for 

FR. Soft Frequency Reuse (SFR) has been proposed to over-

come the problem of bandwidth underutilization. Like FFR, 

SFR partitions the bandwidth into RF  portions, one of which 

is reserved to cell-edge UEs. However, eNBs can also use the 

other subbands, at a lower power, to serve cell-center UEs. 

Although SFR allows each eNBs to use the whole available 

Node e

Node x

Node e
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Figure 2 - Examples of first fit (a) and random (b) allocation 



bandwidth, it provides less protection from interference than 

FFR, as observed in [40].  

In [5], a dynamic FFR scheme is presented, where the size 

of cell-center and cell-edge subbands is set according to the 

cell load. It is based on a graph-coloring algorithm, where UEs 

are the vertices of the graph. An edge exists between two verti-

ces if the corresponding UEs cannot be scheduled in the same 

RB (e.g., because they belong to cell-edge zones of neighbor-

ing cells). The algorithm assigns one color – i.e., one RB – to 

each node, preserving the interference constraints defined by 

the graph. However, the fact that only one RB is allocated to 

one UE might be inefficient and introduce unfairness among 

UEs, since it does not take into account the UEs’ data rate re-

quirement, or their different CQIs. For this scheme, as well, the 

size of the problem is proportional to the number of UEs. 

Moreover, the approach requires one to split UEs among cell-

center and cell-edge UEs, which in turn requires a central con-

troller to know the position and received power strength and 

interference for all UEs and cells. This requires additional, non-

standard signaling overhead, and hampers scalability. 

Dynamic ICI coordination in LTE-A networks is addressed 

by Coordinated MultiPoint (CoMP) techniques [27]. CoMP 

allows a cluster of eNBs to share UEs’ information and per-

form coordination operations at fast time scales, typically on 

each TTI (i.e., one millisecond). CoMP techniques can be di-

vided into Joint Processing (JP) and Coordinated Scheduling 

and Beamforming (CS/CB). In JP, UEs’ data are stored at eve-

ry eNBs in the cluster and transmissions can be performed by 

one or more eNBs simultaneously, where transmission points 

are possibly selected dynamically. On the other hand, CS/CB 

deals with selecting the best allocation of RBs and/or beam 

transmission patterns among coordinated eNBs. For our pur-

poses, we consider only CS schemes in this section, [4]-[8]. 

Broadly speaking, the main problem of the schemes proposed 

in the above works is that they rely on per-UE information, 

which must be signaled, stored and processed. Thus, these 

schemes exhibit high signaling costs and limited scalability 

with the number of UEs and, indirectly, cells.  

The authors of [4] propose a CS algorithm for Cloud Radio 

Access Networks (C-RAN) that jointly optimizes the UE asso-

ciation to the eNBs and their RB allocation. Using graph theo-

ry, the problem is first formulated as a maximum-weight clique 

problem, which is NP-hard. In the literature, some algorithms 

have been developed for solving more efficiently this problem, 

e.g. [28]. According to the results reported in the latter, solving 

the problem on a graph with 1000 vertices would require tens 

of seconds. In [4], the number of vertices of the graph is given 

by U C M× × , where U  is the total number of UEs in a 

cluster and C is the number of nodes in the cluster. Considering 

a small cluster of 10 nodes, 20 UEs per node and 50 RBs, we 

obtain 10000 vertices, which makes it hardly possible at all to 

think of solving this problem at optimality in times comparable 

to our framework’s. However [4] also reports a heuristic, 

whose complexity is linear with the size of the problem 

U C M× × . We believe that even this may not be affordable at 

the network sizes considered in this paper, where we coordi-

nate up to 400 nodes, with a bandwidth of 250 RBs, and an ar-

bitrarily large number of UEs per cell (we use 30 as a proof of 

concept, but our algorithms do not depend on the number of 

UEs). In any case, [4] shows no computational results to assess 

the scalability, or the optimality, of the proposed heuristic. 

In [6], an algorithm for computing muting patterns of coor-

dinated eNBs is proposed. Both centralized and distributed ar-

chitectures are discussed. However, the algorithm assumes to 

know two CQIs for each UE: a “normal” CQI, where all inter-

fering eNBs are assumed to be transmitting, and a “muted” 

CQI where the strongest interferer is muted. This is again non 

standard. The problem is then solved using a greedy search al-

gorithm, whose complexity is ( )2O U .  

Authors of [7] tackle the CS problem by allocating each RB 

independently based on a proportional fair criterion. This re-

quires that the coordinator knows the channel state of all UEs 

in every RB.  

In [8], the CS problem is solved using a two-layer ap-

proach, where large-scale coordination is added on top of a 

small-scale coordination scheme in order to reduce the signal-

ing and algorithmic complexity. However, [8] requires UEs to 

convey to their serving nodes 
12C− , different CQIs, obtained in 

all the possible muting conditions of the 1C −  interferers, 

which limits the scalability of small-scale coordination to just 

three nodes, and the large-scale one to few cluster. The results 

in [8] are limited to an overall 21 cells, whereas our framework 

scales up by one order of magnitude or more.  

Work [39] formulates CS with proportional fair scheduling 

as an ILP, assuming that each UE has a limited set of “strong-

est interferers”, which should be muted on the RB allocated to 

that user, and then presents a heuristic that trades optimality for 

solving time. There are no computational results to show the 

relationship between cluster size and solving time, and the per-

formance gains are evaluated in relatively small clusters of 

three to seven nodes. 

Moreover, all the above schemes address the problem of al-

locating RBs to single UEs. Now, either this is done at each 

TTI, which is hardly feasible at all, given the complexity of the 

algorithms involved, or it is done at longer periods, in which 

case scheduling is progressively less effective and reactive: 

with long-term scheduling, fast-paced variations of channel 

quality cannot be taken into account, and traffic arriving within 

a period can only be scheduled in the next period, which in-

creases delay. On the other hand, our framework handles the 

CS problem at timescales of hundreds of milliseconds, select-

ing which RBs can/cannot be used by coordinated eNBs. Allo-

cation of UEs is still performed on each TTI by eNBs autono-

mously, while taking into consideration the constraints im-

posed by the CS algorithm.  



Several recent works have addressed placement of CoMP 

functions, and the impact of non-ideal backhauling. An intro-

duction to the topic can be found in [34]. Work [37] evaluates 

distributed and centralized CS deployments (the latter with the 

CS function placed either at the macro or at the edge cloud), 

with respect to communication latency and information over-

head. Their findings are that a round-trip delay of up to 5 ms is 

expectable if CS is placed at the edge cloud, which is compara-

ble to what we assume in this paper. Such delay can be added 

to the running time of our algorithms, which is analyzed in the 

next sections, when dimensioning the cluster size, based on a 

maximum period constraint.  

A related avenue of research investigates clustering of 

eNBs for CoMP purposes. Several works have appeared lately 

on the subject (see, e.g., survey [38] and the many references 

therein). Two different approaches are network-centric cluster-

ing, whereby a set of eNB forms a cluster, and all the UEs at-

tached to them are part of the same cluster, and user-centric 

clustering (see, e.g., [35]-[36]), whereby each UE may poten-

tially have its own cluster of coordinated eNBs, e.g., for joint 

transmission. Interestingly, the above works point out that the 

main scalability limitation for CoMP is given by the amount of 

channel state information that needs be conveyed to make it 

effective, especially in the user-centric case. We use a network-

centric approach in this paper, and address the scalability prob-

lem by involving the eNBs in the scheduling and limiting the 

amount of information sent to the controller to a couple of 

bytes per eNB per TTI.  

IV. OPTIMIZATION-BASED COORDINATED SCHEDULING 

In this section we discuss our approach to CS, proposed 

within the Flex5Gware EU project [11], which adopts a differ-

ent perspective that does away with the problems described in 

the previous section. In Subsection A, we first describe the CS 

framework, shown in Figure 3, and the role of each node with-

in it. Then we formulate the CS problem as an optimization 

problem, showing that a non-obvious pattern-based formula-

tion is more efficient, but still has scalability problems (subsec-

tion B). In subsection C we discuss possible ways to trade CS 

optimality for an increase in scale. Subsection D shows that a 

second layer of inter-cluster CS can be superimposed to our 

architecture, and discusses efficient algorithms for it. Subsec-

tion E evaluates the overhead and optimality of our CS ap-

proach, relating time, communication and storage requirements 

to the network scale. 

A. Overview of the CS architecture 

The basic philosophy underlying our approach is that per-

UE scheduling (i.e., understanding which RBs should be allo-

cated to which UE) in a cell should be done by the cell eNB 

itself (see Figure 3). The latter, in turn, communicates with a 

Global Scheduler (GS), that coordinates scheduling in a cluster 

of C adjacent cells. The size and membership of a cluster are 

communicated to the GS by a Global Power Manager, which 

decides which nodes are switched on at any time, using algo-

rithms which are outside the scope of this paper. Nodes in a 

cluster send Scheduling Requests (SR) on each TTI. SRs report 

the number of RBs required to clear the node’s backlog. An 

average of the latter, computed over a period of T TTIs (e.g., 

hundreds or more), is retrieved by the GS and used as an input. 

In turn, the GS sends back to each node i an Allocation Mask 

(AM) on each period. The latter, shown in Figure 4, is a binary 

M-vector, 
i

R , where [ ] 1i x =R  means that node i can use RB x 

to schedule its UEs, and must not use it otherwise. Period T 

cannot be chosen arbitrarily. A constraint on its minimum val-

ue is the time that the GS employs to compute AMs for its 

cluster. That time will in turn depend on several factors, nota-

bly the size of the cluster itself. Therefore, a trade-off exists 

between the cluster size and the reactivity of the system. Here-

after, we describe several solutions, which strike different 

tradeoffs between the two. We refer the interested reader to 

[14] and [11] for more details on Flex5Gware’s software 

framework. 

B. Optimal Coordinated Scheduling 

The GS runs an algorithm with the objective of minimizing 

the global interference in the cluster. The latter is computed as 

the sum of the overlapping RBs between all pairs of cells i,j, 

weighted by the respective interference coefficients (ICs) ,i jα . 

These coefficients can be derived from live measurements of 

existing deployments, or possibly from ray-tracing-based simu-

lations. IC ,i jα  measures the interference that an average UE 

of cell j will hear from cell i. ICs form a cluster-wide interfer-

ence matrix { },i jα=α . Note that α  is not necessarily symmet-

ric, since cells may be anisotropic. Call C  the cluster, with 

C = C , and let A  be the C-vector including the SRs for cell i. 

A straightforward, though inefficient formulation of the CS 

problem is the following:  

0 1 1 ... 0
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... ... ... ... ...
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Figure 4 – Allocation masks (columns) and ownership vectors (rows) 
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Figure 3 – Overview of Flex5Gware’s CS solution 
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The objective function minimizes the number of overlap-

ping RBs, with the ICs acting as weights. Notation ,i jR R  

represents the inner product of AMs iR  and 
jR . Constraint 

(2.i) forces the sum of RBs allocated to cell i to be at least 

equal to its SR [ ]iA . Note that equality will hold in (2.i) at the 

optimum in any case, since this is a minimization problem. 

Coupled with the fact that problem variables are binary (con-

straint (2.ii)), this makes problem (2) a variant of the Quadratic 

Semi-Assignment Problem (QSAP) [17], which is notoriously 

hard to solve at optimality, in large part due to its nonlinear ob-

jective function. Its size is ( )O M C⋅ . Problem (2) can be line-

arized by introducing overlap vectors 
,i jO , i.e. binary vectors 

such that [ ] [ ] [ ],  AND i j i jx x x=O R R , as follows:  

[ ]
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In the above problem, constraint (3.i’) linearizes the logical 

AND between [ ]i xR  and [ ]j xR , and the rest remains equal 

to (2). Introducing overlap vectors, however, inflates the prob-

lem size to ( )2O M C⋅ : a cluster of 10C =  cells, each one us-

ing 100M =  RBs, generates a problem with 10
4
 binary vari-

ables. Beside size, another major disadvantage is symmetry: 

any permutation of the rows of the matrix in Figure 4 yields the 

same objective. This is known to make it much harder to solve 

the model at optimality [29]. All the above concur to implying 

that the solving time of the above model is several orders of 

magnitude above our requirements (100s of TTIs). A better 

formulation can be found by acknowledging that it is the own-

ership of an RB that matters – i.e., which cells are allocating it 

– rather than its position in a subframe. In fact, only the former 

determines inter-cell interference.  

Define the ownership of a generic RB as a C-vector of bi-

naries: for instance [ ]0,1,1,0,...,0,1  means that this RB is allo-
cated simultaneously in the AMs of cells 2, 3, and C. In Figure 

4, where the AMs are represented as columns, rows are owner-

ship vectors, also called patterns. Call P  the set of possible 

patterns, hence 2
C

P= =P . For a pattern ∈p P , call 0x ≥p  

the integer variable that counts the occurrences of p in an AM 

matrix. The interference cost of increasing xp
 by one unit can 

be computed statically, as: 
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Given costs cp
, the model can be rewritten as follows:  
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The objective, though formulated differently, is equal to the 

previous problem’s. Constraint (4.i) states that the number of 

RBs in the AM of a node must not fall below its SR, whereas 

constraint (4.ii) caps the number of allocated RBs to the maxi-

mum M. Variables xp
 are integer, and there are 2C  of them. 

This is therefore an Integer Linear Program (ILP), whose size 

is ( )2CO . This ILP is solvable at optimality by a general-

purpose solver (such as CPLEX, [18]), and despite the fact that 

its size is exponential, it can be solved in split-second times for 

medium-sized clusters (e.g., up to 10 cells, which correspond 

to 
10
2 1024=  patterns). Once (4) is solved, the AMs can be 

found by placing xp
 instances of each row p in any order. 

While (4) is considerably faster than (2) (or its linearized ver-

sion) at medium scales (e.g., ~10 nodes), it goes without saying 

that its solving times will become prohibitive at larger scales, 

due to its exponential size. For this reason, we now discuss 

other algorithms which trade a little optimality for a reduction 

in solving time. The latter readily translates to an increase in 

scale, if the maximum solving time is fixed. 

C. Trading optimality for scalability  

ILP (4) can be solved to optimality in split-second times for 

small clusters. The standard solution algorithm for ILPs is 

branch-and-bound [30], which consists in iteratively solving 

the continuous relaxation, i.e., the model obtained by relaxing 

integrality constraints (4.iii) on variables xp
, so as to compute 

bounds, and then branching. However, solving an LP with an 

exponential number of variables several times is too costly.  

A well-known technique to solve LPs where the number of 

variables is too large is column generation (a.k.a. variable pric-

ing) [19]. The idea is simple: one starts considering a model 

with a small subset of the variables, called restricted master 

problem, and generates the other variables only “if needed” in 

terms of optimality. More precisely, in a minimization prob-

lem, a column is needed if it has a negative reduced cost, be-

cause it can lead to an improvement in the objective function 

value. Let λ  and µ  be the dual variables associated to con-
straints (4.i) and (4.ii). The dual problem reads as follows: 
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Given a dual solution ( )* *,µλ , the reduced cost of varia-

bles xp  is given by:  

* *Tc µ− −p λ p
.  



In order to find the pattern xp  with minimum negative re-

duced cost, or prove that none exist, we seek for a pattern 

∈p P  that minimizes 
*Tc −p λ p  ( *µ  being a constant). The 

problem of finding one or more columns with negative reduced 

cost is called pricing problem. Our pricing problem for varia-

bles xp  has the following form: 

 { }*min :T ⋅ − ∈⋅⋅p α p λ p p P , (6) 

We start by observing that the interference matrix α  is non 

negative, therefore pricing problem (6) could be solved in pol-

ynomial time as a minimum cut problem, were it not for the 

linear term 
*− ⋅λ p . However, we can easily incorporate that 

term into the matrix as a diagonal term, since diagonal terms in 

α  are null by definition, and since [ ] { }0,1i ∈p  implies 

[ ] [ ]
2

i i=p p . Thus, define the modified interference matrix 
ɶ �{ },i jα=α , where � , ,i j i jα α=  if i j≠  and � *

,i i iα λ= − , and re-

write (6) as: 

 ɶ{ }min :T ⋅ ∈⋅p α pp P , (7) 

Problem (7) is an Unconstrained Boolean Quadratic Prob-

lem (UBQP) [20], and it is known to be NP-hard. In order to 

solve a continuous relaxation of (4), we need to solve (7). For 

this, we have two options: 

- A brute-force enumeration of all the patterns in P . This is 

fairly easy, because the UBQP is unconstrained, so the 

feasible set is simply given by all the vectors in P . More-

over, the quadratic objective function for a given p can be 

evaluated in linear time if vectors are enumerated so that 

the hamming distance of consecutive vectors is equal to 

one, i.e., they only differ by one bit. Indeed, if the ham-

ming distance is one, to evaluate the cost of p with respect 

to the previous pattern, we only need to consider the en-

tries in ɶα  corresponding to the one bit that has changed, 

which clearly are ( )O C , so the cost update can be done in 

linear time, despite the objective function being quadratic. 

- Rely on standard solvers like CPLEX, which can solve 0-1 

quadratic programs (QPs).  

The brute-force method will generally be fast enough until 

the number of variables reaches 20 or so. From that scale on-

ward, solving the QP will be faster.  

Once we establish that the LP relaxation of our ILP can be 

solved using column generation, if we then wanted to solve the 

original ILP to proven optimality, we would have to start 

branching and pricing at each node of the branch-and-bound 

tree, just in case more columns of negative reduced cost can be 

found. This method, called branch-and-price, is exact and 

guaranteed to find an optimal solution. However, its computing 

time is too large, hence we prefer to use a heuristic algorithm 

called price-and-branch (PB). PB is considerably faster, since 

it only involves pricing at the root node, rather than at each 

node of the branching tree. The final integer solutions that we 

find may not be optimal. However, we still get a lower bound 

to the optimum of (4) (obtained by solving its linear relaxation 

at optimality at the root node), hence we are able to bound from 

below the optimality gap of our heuristic solutions. 

D. Optimizing cluster borders 

Given that autonomous CS instances are run at each cluster, 

nodes of neighboring clusters can exert uncoordinated interfer-

ence on cluster-border UEs, hence these will still have a worse 

SINR. Increasing the cluster dimension generally reduces the 

percentage of cluster-border UEs: this can be easily seen, for 

instance, by counting the percentage of cluster-border edges in 

a cluster as a function of its size in a hexagon deployment. 

However, our coordination framework leaves room for improv-

ing the conditions for cluster-border UEs, by exploiting the 

output of CS instances run at different clusters. In fact, our pat-

tern-based modeling of CS leaves open the problem of placing 

RBs within a subframe. A solution to problem (4) is a set of 

non-zero integers xp , stating that a subframe will include xp  

instances of pattern p . Thus, a node in the cluster can place 

these instances at any of the M positions in the subframes (this 

is, in fact, the very expedient by which one avoids symmetry). 

This degree of freedom can be exploited to minimize the over-

lap of RB allocation at cluster-border nodes of adjacent clus-

ters. A similar problem has been considered in [8], which 

shows that it can be formulated as a Quadratic Assignment 

Problem (QAP), whose size is ( )2O M K⋅ , K being the num-

ber of clusters. QAPs are NP-hard, and the solution times for a 

QAP of this scale are, again, orders of magnitude above our 

timing requirements, even for small values of K. For this rea-

son, we employ a fast heuristic, proposed in [8], adapting it to 

our settings via some modifications.  

Consider K clusters, each of which is running an autono-

mous instance of CS, and sort them according to some arbitrary 

order, for instance, starting from the innermost cluster and go-

ing towards the outer ones. Call kT  the set of patterns of cluster 

k. The basic idea is to consider clusters sequentially. The pat-

terns of the first cluster are placed arbitrarily within the sub-

frame. Then, an iterative procedure arranges the patterns of the 

remaining 1K −  clusters. The patterns of each new cluster are 

placed in the subframe so as to minimize the increase in the 

total inter-cell interference, still measured as the weighted 

overlap of RBs between interfering nodes. In particular, at step 

k, the patterns belonging to kT  are placed according to the so-

lution of the following optimization problem: 
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The objective function minimizes the overall mutual inter-

ference with patterns belonging to 
jT , 1 1j k≤ ≤ − . The term 



, ,, x yx y
β α

∈ ∈
=∑p q p q  

represents the interference that nodes active in pattern p pro-

duce on UEs served by nodes active in pattern q, whereas bina-

ry variables ,i
b

p  are set if pattern p is placed at RB i. As a re-

sult, the term 

,active in i
β∑ p qq   

in the objective accounts for the overall interference that p 

would produce if placed on RB i, knowing which patterns have 

already been placed in that RB during the previous iterations. 

Constraint (8.i) states that at least xp  instances of pattern p are 

allocated, whereas constraint (8.ii) avoids that two patterns of 

the same cluster are placed in the same position. The output 

will be taken into account for step k+1. Problem (8) is again an 

ILP, and 1K −  instances of it need to be solved in sequence. 

However, it can be easily recognized to be a Linear Assign-

ment Problem, i.e. one of the (few) ILPs that can be solved in 

polynomial time, e.g. via the Hungarian algorithm [21], which 

is ( )3O K . 

E. Overhead and optimality.  

It is worth mentioning that our CS framework has actually 

been prototyped and demonstrated [13]-[14], using eNB im-

plementations based on OpenAirInterface and real 4G UEs. 

Now, the scale of a prototype can only be limited (ours incor-

porates three nodes), hence the latter is not the right tool to as-

sess large-scale effects such as those we investigate in our pa-

per. However, a prototype still allows one to measure the actual 

communication and storage overhead involved, and extrapolate 

the results to larger scales. The main findings in [14] are that 

the highest communication overhead is due to per-TTI SRs 

coming from the nodes, whose rate is in the order of 400kbps 

per node (at the Ethernet level). The network interface of a 

low-end server network hosting the GS will be able to manage 

scales of tens of nodes without any trouble. On the other hand, 

the SRs can be stored into circular buffers, which limits the 

storage required to perform CS to sizeof(SR)×T per node, 

T being the CS period in multiples of a TTI (reasonable values 

being 100-1000). Again, coordinating tens of nodes at a CS pe-

riod of 1 second would require at most few kilobytes of stor-

age. Therefore, the only possible limitation to scalability may 

be due to the running time of the CS algorithm. 

We then discuss the solving times of the CS algorithms and 

the optimality of the heuristics. Figure 5 shows the average 

solving time of (4) and the two heuristics based on column 

generation, with an increasing cluster size. Reported values are 

the average of measurements obtained running the CPLEX 

solver on ten network instances, on a machine equipped with 

an Intel(R) Core(TM) i7 CPU at 3.60 GHz, with 16 GB of 

RAM and a Linux Kubuntu 14.04 operating system. Assuming 

that the network manager requires CS to be run at a period of 

one second, (4) can be solved at optimality for cluster sizes of 

up to 15 cells. Larger scales can be achieved using the heuris-

tics. In particular, it is possible to scale up to 20 and 25 nodes 

using the brute-force and PB approaches, respectively. While 

the size of (4) does not depend on either the system bandwidth 

M or the size of the SRs [ ]iA , one may legitimately wonder 

whether its solution times are affected by the values of these 

parameters. However, Figure 6 and Figure 7 show that this is 

not the case. Figure 6 shows the CPLEX solving time for clus-

ters of nine nodes, where coordinated cells request an increas-

ing number of RBs, in a 10MHz-bandwidth deployment (i.e., 

M=50). Measured times are fairly constant. Figure 7 shows the 

behavior of CS with an increasing M (note that 50MHz de-

ployments, i.e. M=250, are envisaged for 5G). The mean solv-

ing time of the CS problem remains constant, and reasonably 

small, in this case as well.  

The solving times of the inter-cluster CS are in the range of 

few ms, hence the latter adds a negligible overhead on the CS 

problem itself. This is shown in Figure 8, which reports the av-

erage solving times of (8) as a function of both the number of 

clusters and their size. On one hand, solving times increase 

with the number of coordinated clusters. On the other hand, 

these depend weakly on the cluster size. Anyway, solving 

times are largely affordable for the intended CS periods. For 

instance, coordinating 19 clusters of 21 cells each requires less 

than 35ms. We recall that the solving time of inter-cluster CS is 

added to the maximum solving time among the coordinated 

clusters, since clusters can run their CS in parallel. Therefore, 

the above figure shows that it is actually feasible to coordinate 

 

Figure 7 - Average solving times as a function of the 
available bandwidth 

 

Figure 5 - Average solving times as a function of the 
cluster size 

 

Figure 6 - Average solving times as a function of the 

cell load 



an uber-cluster of 400 cells at sub-second periods. To the best 

of our knowledge, this is the first dynamic CS scheme to be 

tested at similar scales. To get an intuitive feeling of what this 

scale translates to, consider that dense 4G network deploy-

ments can be expected to have around 10 eNBs/km
2
, and recent 

works anticipate ultra-dense 5G network to scale to 40-50 

eNBs/km
2
 [22]. Thus, even in dense scenarios, our CS could 

coordinate all the eNBs in medium- or large-sized cities, serv-

ing populations in the order of tens to hundreds of thousands. 

We remark that the above times have been obtained using a 

clever problem formulation, and relying on a general-purpose 

solver and off-the-shelf hardware. There are good reasons to 

believe that they could be further abated by employing ad hoc 

solution algorithms and more powerful, dedicated machines. 

Figure 9 shows the optimality gap of the two heuristics, up to a 

scale where the optimum can be computed within reasonable 

times. The figure shows that both are within few percentage 

points of the optimum, with PB faring worse when the scale 

increases. 

Summing up, we provided a clever formulation for the CS 

problem, as well as three different solution strategies for it. An 

operator may thus choose the most appropriate strategy, trading 

cluster size (hence CS effectiveness, as we show in the next 

section) for solving time (hence reactivity).  

V. PERFORMANCE EVALUATION 

This section presents results showing the effects of CS on 

mean and cell-edge SINR, cell throughput, and the energy sav-

ings that it enables. Large-scale assessment requires proper 

tools. For this reason, we first describe the tool, and then pre-

sent the results. 

A. Description of the simulation tool 

We use a flexible snapshot simulator that simulates the as-

sociation and resulting SINR of UEs in a large-scale multicell 

deployment, evolved from the one in [23]. The term snapshot 

(as opposed to discrete-event) implies that time does not play a 

role here, and that the purpose of the simulator is to compute 

the steady-state regime given a cell deployment, a UE drop-

ping, per-UE association rules and traffic requirements.  

Our CS simulator allows an arbitrary number of hexagons 

to be defined on a 2D-floorplan as a reference grid. Macro 

nodes are placed on the vertices of the hexagons (e.g., as 

shown in Figure 10) and transmit with an anisotropic pattern, 

whose attenuation is defined as ( ) ( ){ }min 12 70 , 25A θ θ= ⋅ �  

[25], where θ  is the relative angle between the macro and the 
receiving UE. It is possible to simulate heterogeneous networks 

by placing low-power nodes (e.g., micro nodes) in the system, 

as shown in Figure 10. UEs can be dropped in the floorplan ac-

cording to any pre-specified spatial distribution. UEs are asso-

ciated sequentially, i.e., one by one, to their serving node. The 

latter is the macro within their hexagon, or - if micro nodes are 

 

 

Figure 9 - Optimality of CS heuristics 

 

Figure 8 - Average solving time of inter-cluster coordination heuristic 
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Figure 11 - Data rate as a function of SINR 

 

Figure 10 - Hexagon tessellation 

Table 1 - Main simulation parameters 

Parameter Value 

Inter-site distance  500 m 

Carrier frequency 2 GHz 

Path loss model ITU Urban Macro [25] 

UEs per hexagon rand(25,35) 

UEs deployment Uniform 

Number of snapshots Five 

 



present – the node with the highest SINR. Cell Range Expan-

sion (CRE) can also be configured for micro nodes. For exam-

ple, triangular markers in Figure 10 represent UEs associated to 

the macro eNB, whereas stars denote UEs associated with one 

of the micros. 

We have already discussed that interference (hence SINR) 

depends on the RB occupancy at each node. Therefore, for 

each UE u, we need to compute the average RB utilization per 

TTI, which is obtained from its data rate 
u

D  and its average 

SINR as: 

 ( )eu u u
RB = D F SINR . (9) 

In equation (9), ( )euF SINR  is the data rate per RB achiev-

able by u, served by node e. The function is represented in Fig-

ure 11, where 
MAX

η  is the maximum data rate that can be 

achieved on one RB, for values of SINR equal or above 

MAX
SINR . UEs whose SINR is below 

min
SINR  are considered 

out of range. The shape of the curve in Figure 11 is obtained by 

interpolating the results of link-level simulations of a 4G net-

work (e.g., [24]). Parameters 
MAX

η , 
MAX

SINR  and 
min

SINR  will 

change with the onset of 5G cellular technologies, but the 

shape of the interpolated curve is unlikely to change. Note that 

u
RB  may be non integer. This is not a problem, since 

u
RB  is 

an average value obtained over the time span of a snapshot, 

which is large enough (hundreds of TTIs at least) to allow a 

fluid approximation.  

The alert reader will notice that, since the average SINR is 

computed through (1), there is a circular dependence between a 

UE’s SINR and the RBs allocated to it. In fact, when node e 

allocates some RBs to its served UEs, 
,e x∆
 
may increase for 

every node x, thus increasing the interference suffered by UEs 

attached to those nodes. This in turn reduces their SINR and 

increases their RB occupancy, and so on. This means that the 

average SINR must be computed iteratively, factoring in the 

varying interference of nearby cells every time, until a steady 

state is reached. The algorithm for doing this is shown in the 

pseudocode of Figure 12. The procedure is a loop repeated for 

up to 
max

N
 
iterations or until convergence is reached. Each it-

eration cycles through every UE. We distinguish two phases: 

1. Association Phase: for the first N iterations (lines 6-7) UEs 

are allowed to select the serving node, according to a best-

SINR policy (line 7), possibly including cell-range expan-

sion (CRE) biases. While doing so, the procedure also al-

locates RBs (line 10), according to the selected policy 

(e.g., FF, R, or CS). Note that, on the first iteration, no 

RBs have been allocated yet, hence the interference is null, 

hence the association is path loss-based rather than SINR-

based. After the first iteration the interference is updated, 

hence the nearest node may not be the one with the best 

SINR anymore. This is why the Association Phase is re-

peated. However, a maximum number of re-associations 

has to be enforced, lest some UEs end up oscillating indef-

initely between two or more serving nodes, typically when 

they are at cell edge. 

2. Convergence Phase: for all the subsequent iterations, UEs 

do not change their serving node, and only the allocated 

RBs are updated according to the selected policy. 

When CS is enabled, the allocation of RBs (line 10) in-

cludes the execution of the CS algorithm for all clusters. The 

solution of the CS problem is obtained using the CPLEX solv-

er. In particular, CPLEX is given the number of RBs required 

by all nodes as an input, and returns the AMs for each node 

when a solution to the CS problem is obtained. At the end of 

each iteration, the interference is updated according to the allo-

cation (line 13). With reference to (1), 
,e x∆ is computed as de-

scribed in Section II for FF and R. On the other hand, CS im-

plies that 
,

,
e x e x

∆ = R R , where 
e

R  and 
x

R  are the AMs for 

nodes e and x. Moreover, the following value is computed: 

( ) ( ),, ( )

RX

x uu x x servingEnb u
PInterf n

≠
=∑ ∑

  

which represents the sum of the interference perceived by 

all UEs u from every non-serving eNB x, at iteration n. If: 
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1

1

Interf n Interf n

Interf n
δ

− −
>

−
,  

δ  being a configurable threshold, the interfChanges flag is 
set, to signal that convergence has not been reached yet. In our 

simulations, δ  is set to 0.05, meaning that convergence is 
reached when interference variation is less than 5% w.r.t. the 

 

Figure 13 – Evolution of UE SINR across successive iterations in three hexagons 

1. iteration = 0  

2. while(interfChanges or iteration > Nmax) 

3.    resetAllocation() 

4.    for each hexagon i   

5.       for each UE u in i  

6.          if(iteration < N) // Association Ph. 

7.             k = chooseEnb(u) 

8.          else             // Convergence Ph. 

9.             k = getServingEnb(u)   

10.          allocateBlocks(u,k) 
11.       end for 
12.    end for   
13.    interfChanges = updateInterference() 
14.    iteration++; 
15.  end while 

Figure 12 – Iterative allocation of RBs 



previous iteration. This condition is only tested after six itera-

tions have been completed. Figure 13 shows how the SINR de-

creases with the iterations, quickly converging.  

B. Simulation configuration 

The simulation results presented in the following sections 

are obtained from a network deployment where trisectorial 

macro-nodes sites are placed at an inter-site distance of 500 m. 

The floorplan includes a total of 183 hexagons, each one 

served by a macro node. During the setup of each snapshot, a 

random number of UEs comprised between 25 and 35 are uni-

formly deployed within each hexagon. For simplicity, UEs re-

quest the same data rate. We vary that rate and measure their 

SINR according to the path loss model defined in [24] for ur-

ban scenarios. As far as data rate curves (Figure 11) are con-

cerned, we consider 
min

10SINR dB= −  and 30
MAX

SINR dB= , 

whereas parameter 
MAX

η  will be varied according to the con-

sidered technology (i.e., LTE-A or towards-5G). With refer-

ence to Figure 14, the power consumed by a node is modeled 

as an affine function of the number of transmitted RBs [26], 

i.e., 
base

p P nρ= + ⋅ , where 
base
P  is a baseline power, n M≤  is 

the number of allocated RBs, and ρ  is the consumption per 
RB. In our simulations, all nodes are active. Equipment manu-

facturers and operators [26] show that the shape of the power 

model has not changed so far, and it is unlikely that it will, 

whereas the above parameters have changed their value in the 

past years and will change it in the future, due to technology 

improvements and the onset of 5G. For this reason, we will 

specify the employed parameters for evaluating the consump-

tion with both LTE-A and towards-5G technologies when 

needed.  

In order to run the CS algorithm, we must compute inter-

ference coefficients (ICs) for each pair of nodes, according to 

the employed network configuration. Given two arbitrary cells 

i,j, we obtain IC 
,i jα  by measuring the average power received 

by (non-serving) cell j at three different locations in cell i, i.e. 

100m of distance from the serving node, with a relative angle 

of -30°, 0° and 30° respectively.  

Statistics are collected on the 21 central hexagons in the 

floorplan and on the UEs placed within them. Each measure is 

obtained as the average of five snapshots. A summary of the 

main simulation parameters is reported in Table 1. 

As far as CS is concerned, we use the optimal formulation 

of the CS for clusters up to 15 nodes. Then, we employ 

bruteforce heuristic for clusters of up to 21 nodes, whereas 

price-and-branch is used for larger clusters.  

C. CS benchmarking 

In this section, we assess the performance of CS at increas-

ing scale, as well as the additional benefit deriving from inter-

cluster coordination (ICC). We consider cluster sizes of three, 

nine and 21 (see Figure 15). When enabling ICC, we coordi-

nate 19 clusters when the cluster size is three or nine, and seven 

clusters when the cluster size is 21. The remaining cells exert 

uncoordinated interference. 

We first provide a network-wide representation of the bene-

fits of CS from a channel-quality perspective, considering a 

scenario where only macro nodes are deployed, transmitting at 

46dBm. Figure 16(a-d) show the distribution of SINR over the 

network area, obtained with an offered load of 36 Mbps per cell. 

The SINR value increases going from blue to yellow. Figure 

16a shows the SINR when employing CS with C=3, i.e. coordi-

nating cells located at the same site. UEs close to the intra-

cluster borders obtain a good SINR, although interference from 

neighboring, uncoordinated nodes is still strong and large areas 

                     

Figure 15 – Clustering of size three, nine and 21 

 

Figure 14 - Node power model 

Table 2 - Power models for year 2016 (10MHz-bandwidth system) 

Parameter Value 

Tx Power [dBm]
 

46
 

Antenna gain [dBi] 18 

base
P  [W] 279 

ρ  [W/RB] 15.08 

 



of the cells have a low SINR. In Figure 16b, CS coordinates 

clusters of size nine. In this case, more cell-border areas become 

greener. On the other hand, the improvement when scaling CS 

to 21 cells, shown in Figure 16c, is remarkable. Still, cluster-

border areas with worse SINR are well visible. Figure 16d 

shows that ICC improves channel conditions for those areas as 

well. 

Figure 17 shows the average power consumed by a node. In 

particular, the figure refers only to the power contribution due 

to the allocation of RBs, hence without considering the 
base
P  

terms, which only add a constant offset to the values. Without 

considering ICC, we can observe that power consumption de-

creases with the cluster size. Larger clusters imply fewer clus-

ter-border UEs, which are those suffering most from uncoordi-

nated interference. When ICC comes into play, interference at 

cluster borders is abated too and power consumed by nodes is 

further reduced. At low loads, ICC levels the gaps between the 

performance of CS run at different cluster sizes. However, at 

higher loads, the increasing number of allocated RBs makes it 

more difficult to arrange RBs so as to minimize inter-cluster 

interference. This makes ICC less effective and employing 

larger clusters is again preferable.  

The above power savings can be explained by looking at 

the average SINR perceived by the UEs, which is reported in 

Figure 18. The figure shows that larger clusters allow higher 

SINRs, and ICC provides additional improvements. Clearly, 

better channel conditions result in fewer RBs required to satisfy 

the same load, hence less consumed power. 

Hereafter, we compare static CS schemes against our CS 

framework, with C=21 and ICC enabled. 

D. Comparison against static CS schemes 

We compare our CS approach against the FF and R base-

lines described in Section II, and against static CS schemes. 

We consider Frequency Reuse (FR) with reuse factors 3RF =  

and 7RF = , where each cell can use 1 RF  of the available 

bandwidth. FR schemes only determine which portion of the 

bandwidth can be used by a node. We assume that the latter 

allocates RBs within its portion using the R policy. We also 

simulate FFR, where the bandwidth is first halved in a cell-

center and a cell-edge subbands: the former is shared among all 

the eNBs and used to serve UEs closer to the eNB, whereas the 

latter is partitioned in RF  portions like FR and is reserved for 

cell-edge UEs.  

1) Results for 4G (LTE-A) technology 

In this section, we simulate a scenario that refers to the 

LTE-A technology, and is based on a release 10 deployment. In 

particular, we consider a 10MHz-bandwidth system (resulting 

in M=50 RBs) with macro nodes only. The maximum per-RB 

data rate is assumed to be 4.5
MAX

Mbpsη = . Power consump-

tion is evaluated according to the parameters reported in Table 

2. The latter are taken from [26] and refer to a 10MHz-

bandwidth system for year 2016. 

 

Figure 17 - Nodes’ power consumption with different clustering 

 

Figure 18 - Average SINR with different clustering 

Figure 16 - SINR distribution, per-cell offered load=36Mbps 

     
                   a) CS, cluster of 3 cells                         b) CS, cluster of 9 cells                    c) CS, cluster of 21 cells      d) CS, 21-cells plus ICC 



Figure 19 reports the average cell throughput with increas-

ing per-cell offered load. As the figure shows, static reuse 

schemes (i.e., both FR and FFR) saturate sooner than the oth-

ers, with FFR faring better than FR for the same reuse factor
1
. 

In fact, reuse schemes cannot carry the offered load, even when 

it is quite low, since they are restricted to using only a limited 

portion of the available bandwidth. We remark that we simu-

lated a scenario where UEs are uniformly distributed within the 

floorplan. This is the best condition for frequency reuse 

                                                           
1 Our simulations show that SFR fares considerably worse than FFR, hence 

results related to SFR are omitted for readability. This is coherent with find-
ings in other papers, e.g. [40]. 

schemes that equally divide the bandwidth among coordinated 

cells. Even if the bandwidth partitioning can be done in order 

to accommodate a non-uniform distribution of UEs, static CS 

still fails to adapt to dynamic environment where UEs’ position 

and/or datarate change at fast paces, e.g. connected vehicles on 

a highway. CS has the same throughput as FF and R, since CS 

cannot bring benefits when the network is in saturation. How-

ever, they differ in terms of how efficiently the same traffic is 

handled. The average nodes’ power consumption is reported in 

Figure 20. Recall that the figure refers only to the power con-

tribution due to the allocation of RBs. The figure shows that 

CS consumes less power than the baselines, especially at low 

 

Figure 20 – Nodes’ power consumption, LTE-A scenario 

 

Figure 21 - Relationship between cell throughput and power consumption, LTE-A scenario 

 

Figure 22 – 5th percentile of UEs’ SINR, LTE-A scenario 

 

Figure 19 - Average cell throughput, LTE-A scenario 



 

Figure 25 - 5th percentile of UEs’ SINR, foreseen 5G scenario, macro-only 

 

Figure 23 - Average cell throughput, foreseen 5G scenario, macro-only 

loads. This is because CS enhances the SINR perceived by the 

UEs, hence the number of RBs required to satisfy the offered 

load is reduced.  

We now bring together the considerations for the throughput 

and power consumption. The top of Figure 21 shows the power 

consumed by baseline schemes, normalized w.r.t. the power 

consumed by our CS scheme with C=21 and ICC. The bottom 

of Figure 21 represents the fraction of carried load for all 

schemes (including our CS). For the reuse schemes, two regions 

can be distinguished, divided by a vertical arrow in the graphs: 

to the left, the corresponding scheme is able to carry the entire 

offered load, whereas to the right the throughput lags behind the 

offered load. We can observe that when the network is stable, 

the normalized power for the baselines is always above one, i.e. 

the baseline schemes consume more than our CS algorithm. On 

the other hand, (F)FR schemes can be more energy-efficient 

than our CS, but this only happens when they fall behind the 

offered load
2
. When the entire spectrum is allocated, i.e., with 

the FF and R schemes, the throughput is the same as CS’s, but 

the power consumption can be up to 2.5 and 1.5 times higher 

                                                           
2 The only exception appears to be for FR 3, with an offered load of 

42Mbps, where the power consumption ratio is below 1. This is due to several 

factors: first of all, the power normalization is done w.r.t. the sample mean of 
CS’s power consumption, which has statistical fluctuations. Second, at C=21, 

CS is being done suboptimally through brute-force. Third, once again, this is 

the best-case scenario for FR schemes, with uniform traffic and little differ-
ences from one cell to the next.  

than CS’s. Note that 4G cells spend most of their time in very 

lightly loaded conditions, in practical deployments [31], hence 

schemes that allow a network to save energy when the load is 

low are going to make a remarkable difference in an operator’s 

bill.   

The improvements to the cell-edge UEs’ channel quality 

are shown in Figure 22, which reports the 5
th
 percentile of the 

SINR perceived by UEs with an increasing per-cell offered 

load. We note that, at low loads, CS improves the SINR of cell-

edge UEs. At high loads, CS cannot perform better than unco-

ordinated schemes. In fact, the number of RBs required to sat-

isfy the requested datarate increases and there is less space for 

coordination, i.e. it becomes hard to accommodate nodes’ allo-

cation so as to minimize interference. On the other hand, SINR 

values obtained with frequency reuse schemes stay higher than 

those obtained with CS at high loads. As already mentioned, 

this comes at the price of restricting the available bandwidth, 

hence achieving lower throughput.  

2) Foreseen results towards 5G 

In this section, we discuss what is expectable with the onset 

of 5G. 5G will evolve in at least three directions: higher data 

rates, due to higher-order modulations, larger spectra, and 

denser deployments. We keep all the above into account in the 

following experiments. As for data rate and spectra, we consid-

er a configuration based on LTE-release 13, which is known 

under the commercial name of LTE-A Pro, and incorporates 

 

Figure 24 - Nodes’ power consumption, foreseen 5G scenario, macro-only 

Table 3 - Power models for year 2020 (50MHz-bandwidth system) 

Parameter Value 

 Macro node Micro node Pico node 

Tx Power [dBm] 46 38 21 

Antenna gain [dBi] 18 11 11 

base
P  [W] 200 48.65 5.908 

ρ  [W/RB] 3.332 0.384 0.0349 

 



many new technologies and deployment characteristics that are 

foreseen to be used in 5G [41]. In particular, we assume both 

larger bandwidth with respect to LTE deployments, i.e. a min-

imum of 50MHz (M=250 RBs), and higher maximum per-RB 

data rate 12
MAX

Mbpsη = . Moreover, it is likely that technolo-

gy improvements will modify power consumption parameters. 

Table 3 reports the power model parameters foreseen for the 

year 2020 [26]. First, we evaluate a network with macro nodes 

only, as in the previous section. Figure 23 and Figure 24 repre-

sent the cell throughput and the power consumed by the eNBs. 

Figure 25 shows the 5
th
 percentile of the UE SINR. Results are 

qualitatively similar to those in the previous section, albeit with 

a different scale. This supports our claim that increased data 

rates and larger spectra will not decrease the benefits of our CS 

framework.  

Since the upcoming 5G technology will make use of dense 

deployment of heterogeneous cells to increase the system ca-

pacity, we now assess the performance of the CS algorithm in 

heterogeneous networks with different densities of small, low-

power nodes. The latter introduce additional interference in the 

network, which needs to be managed. On the other hand, they 

can offload some capacity from the macro node. Association of 

UEs is performed according to a best-SINR criterion. In order 

to facilitate load balancing, we assume that low-power nodes 

exploit a CRE of 6 dBi. Our first heterogeneous scenario is re-

ported in Figure 10, where two micro nodes per cell are placed 

on vertices of the hexagons. Since each macro comes with two 

additional micros, static reuse schemes, i.e. FR and FFR, em-

ploy reuse factors 3RF =  and 9RF = . For example, in FR 

with 3RF = , the available bandwidth is divided among the 

macro and the micro nodes of the same hexagon. For the same 

reason, we employ CS on clusters composed of nine hexagons, 

resulting in 27 nodes to be coordinated. Again, considering the 

solving times of the CS for large clusters, the price-and-branch 

approach is employed.  

The average cell throughput is reported in Figure 26. With 

respect to the macro-only scenario, micro nodes allow the net-

work to postpone the saturation point of the cells. Nodes’ pow-

er consumption is reported in Figure 27. In this case too CS al-

lows the operator to save frequency resources and consume 

less power. For instance, considering an offered load of 

720Mbps, CS with ICC saves about 75W per hexagon with re-

spect to the R scheme, and about 200W with respect to the FF 

one. Figure 28 shows the 5th percentile of the SINR perceived 

by the UEs. By comparing this with Figure 25, we observe that 

adding micros actually improves the cell-edge throughput when 

CS is enabled, but it reduces it with (F)FR schemes. This is be-

cause reuse has to take into account micros as well, hence the 

distance between nodes (notably, macros) using the same 

bands is reduced for the same reuse factor. 

 
Figure 26 – Average per-hexagon throughput, foreseen 5G scenario, micros 

enabled  

 

Figure 29 – Average per-hexagon throughput, dense deployment of pico nodes  

 

Figure 27 – Nodes’ power consumption, foreseen 5G scenario, micros enabled 

 

Figure 28 - 5th percentile of UE SINR, foreseen 5G scenario, micros enabled  



We now evaluate our CS framework in a scenario where 

each macro node comes with 15 pico nodes randomly placed in 

the corresponding hexagon, resulting in a density of about 40 

nodes/km
2 
[22]. Pico cells are randomly deployed within the 

hexagon and transmit at 21dBm. Parameters for evaluating the 

power consumption of pico nodes are summarized in Table 3. 

In this case, a CS cluster is composed of the macro and its em-

bedded picos, whereas ICC is done among single-macro clus-

ters. Given the irregular deployment of nodes, static frequency 

reuse schemes, i.e. FR and FFR, can hardly be applied. In fact, 

a suitable frequency reuse plan cannot be done in dense de-

ployments where distance between nodes is not uniform. Thus, 

we compare CS with and without ICC, against FF and R. Fig-

ure 29 and Figure 30 report the average per-hexagon through-

put and the nodes’ power consumption, respectively. Also in 

this case, CS achieves similar throughput as FF and R, albeit 

consuming less power. In such a dense scenario ICC largely 

contributes to improving the performance. In fact, macro nodes 

in adjacent hexagons are not part of the same cluster, hence 

their allocations are not coordinated when ICC is disabled and 

they would exert high interference. This is made more evident 

by the cell-edge SINR shown in Figure 31. 

VI. CONCLUSIONS 

In this paper, we have investigated how coordinated sched-

uling (CS) improves network performance, i.e. it allows a net-

work to carry the same traffic employing fewer resources, and 

protects cell-edge users from excessive interference. To show 

this, we have first devised optimization models that can be 

solved in clusters of few tens of nodes in a sufficiently short 

time as to match the dynamics of current and future cellular 

networks. Then, we have shown that clusters can be subject to 

a further level of inter-cluster coordination, to improve the 

conditions of cluster-border UEs, with a little extra overhead. 

This allows a network operator to coordinate up to 400 cells at 

sub-second timescales, with off-the-shelf hardware.  

Using a large-scale snapshot simulator, we have shown that 

the above-mentioned benefits actually increase with the scale 

of coordination, up to the maximum allowed by our models, 

which confirm that there is a need to scale coordination up. The 

energy-efficiency benefits will be even more tangible in the 

near future, when next-generation base stations will be around, 

whose power consumption depends more on the number of al-

located RBs. Moreover, the near future will witness heteroge-

neous and denser deployments, with both macro and micro (or 

pico) cells. In this case, protecting micro cells from the inter-

ference of the macros will be the key to reaping the benefits of 

having spatially-localized high-bandwidth hotspots. We have 

shown that these deployments benefit from our CS scheme as 

well.  

The work reported in this paper can be extended in several 

directions. First, devising optimal clustering algorithms, so as 

to maximize the gains of CS given a maximum cluster size (or, 

equivalently, a constraint on the solving time of the optimiza-

tion problem). This is especially important when the cell layout 

and antenna radiation pattern is irregular, as happens in practi-

cal deployments (and all the more with heterogeneous deploy-

ments). Second, devising optimal power saving algorithms, 

that leave the minimum set of nodes powered on for a given 

traffic demand, assuming optimal CS is in place within and/or 

among clusters. In fact, the resource saving obtained through 

CS may well translate to a smaller number of active nodes re-

quired for a given traffic demand (see, e.g. [32], [33]). This 

would further enhance the energy efficiency of the network.  
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Figure 30 – Nodes’ power consumption,  dense deployment of pico nodes 

 

Figure 31 - 5th percentile of UE SINR, dense deployment of pico nodes 
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