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ESERCIZIO 1

In �gura sono rappresentate due giunzioni pn in serie. I due diodi hanno gli stessi parame-
tri: NA = 1016 cm−3, ND = 5×1015 cm−3, µn = 0.1 m2/Vs, µp = 0.04 m2/Vs, τn = τp = 10−6

s, entrambi a base lunga. Di�eriscono per la super�cie: SA = 100 µm2, SB = 0.5 m2 (è un
pannello solare).

1) Determinare le tensioni e le correnti quando ai terminali AB è applicata una VBA = 5
V. Si ricordi che se la tensione di polarizzazione di un diodo è molto piccola NON si può
trascurare l'1 nell'espressione della corrente. [3]

2) Determinare le tensioni e le correnti quando ai terminali AB è applicata una VAB = 5
V (opposta al punto 1). [3]

2) Tra i terminali AB si applica VAB = 0.4 V. Cosa succede? Determinare le tensioni sui
diodi, facendo una approssimazione ragionevole da veri�care alla �ne. [4]

ESERCIZIO 2

Un transistore n-MOS (condensatore MOS ideale, NA = 1016 cm−3, tox = 20 nm, W =
L = 2 µm, µn = 0.08 m2/Vs) è polarizzato con VGB = 0.5 V, VDS = 0.5 V (regime lineare).

1) Determinare la caduta di tensione nel silicio e la concentrazione di elettroni alla
super�cie ns nel caso VSB = 0 e nel caso VSB = 2 V (per la stessa VGB). [4]

Si consideri il caso VSB = 0:
2) Si approssimi l'andamento della concentrazione di elettroni con n(x) = nse

−x
a , dove

a = 50 nm. Determinare la corrente IDS dovuta agli elettroni nel canale (è piccola, poiché
siamo sotto-soglia, ma è diversa da 0). [4]

3) Si confronti la corrente calcolata nel punto 2 con quella che si ha per VGS = 5 V. [2]

ESERCIZIO 3

Si consideri una giunzione tra silicio n+ = ND = 1019 e silicio n = ND = 1016 cm−3. Tra
le due regioni con diverso drogaggio si viene a generare una barriera di altezza EB = qVB.

1) Si determini VB (o qVB in eV), e si esegua un gra�co delle bande.[3]
2) Ripercorrendo la dimonstrazione per la densità equivalente degli stati, si determini la

concentrazione di elettroni nella parte n+ che hanno energia su�ciente a superare la barriera.
Discutere le approssimazioni necessarie, e dimostrare che è pari a n. NOTA: la densità degli

stati è D(E) = 4π
(
2m∗

h2

) 3
2 , con m∗ = 1.08m0.[4]

3) Nella dimostrazione 2 è necessario approssimare la massa e�cace costante con l'energia.
Si discuta sulla validità di questa approssimazione, confrontandola con il caso della densità
equivalente degli stati.[5]
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SOLUZIONE 1
1) Il diodo con area grandeB è polarizzato in diretta, quello con area piccolaA è in inversa. La
corrente è limitata dalla saturazione inversa del diodo A. Calcoliamo le correnti di saturazione
inversa:

Dn =
kT

q
µn = 2.585× 10−3 m2/s

Ln =
√
Dnτn = 50.84 µm

Dp =
kT

q
µn = 1.034× 10−3 m2/s

Lp =
√
Dpτp = 32.15 µm

ISA = qSAn
2
i

(
Dn

NALn

+
Dp

NDLp

)
= 1.83× 10−17 pA

ISB = qSBn
2
i

(
Dn

NALn

+
Dp

NDLp

)
= 207.5 nA

Quindi quando avremo VBA > 0 il pannello solare è polarizzato in diretta, ma il diodo A
molto piccolo limita la corrente a ISA. La caduta di tensione su B sarà molto piccola, e non
è trascurabile il termine −1. La corrente è positiva da B ad A Si può calcolare come:

IB = ISA = ISB

(
e

VB
VT − 1

)
VB = VT ln

(
ISB + ISA

ISB

)
≈ 0

Quindi avremo VA = 5 V in inversa, e VB polarizzato in diretta ma con tensione molto
piccola.



2) In questo caso è A che è polarizzato in diretta. Basta ripetere i conti del punto
precedente, aspettandoci una caduta di tensione su A non trascurabile:

IA = ISB = ISA

(
e

VB
VT − 1

)
VB = VT ln

(
ISB + ISA

ISA

)
= 0.577 V

Quindi A è polarizzato in diretta con VA = 0.577 V, mentre il resto della caduta è su B
polarizzato in inversa, con VB = 5− 0.577 = 4.422 V.

3) In questo caso la polarizzazione diretta di A può non essere su�ciente per raggiungere
la corrente di saturazione inversa di B, poiché ISB ≪ ISA. Infatti, se tutta la VAB cadesse su
A avremo:

IA = ISA

(
e

VAB
VT − 1

)
= 4.6 nA (1)

L'approssimazione ragionevole è quella di assumere VB molto piccola. Infatti, con VB pola-
rizzato in inversa avremo che basta una tensione pari a:

IB = ISB

(
e

VB
VT − 1

)
= −4.6× 10−9

ISBe
VB
VT = −4.6× 10−9 + ISB

VB = VT ln

(
ISB − 4.6× 10−9

ISB

)
= −1.3 mV

Quindi VA = 0.5 V e IA = 4.6 na, in diretta, e VB = 1.3 mV IN INVERSA.
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SOLUZIONE 2

1) Iniziamo calcolando la tensione di soglia e la corrente IDS:

Cox =
ϵs
tox

= 1.726× 10−3 F/m2



ψB = VT ln
NA

ni

= 0.347

VTH =

√
2ϵsqNA2ψB

Cox

+ 2ψB = 0.974 V

Per VGS = 0.5 V avremo VGS < VTH , quindi per determinare la caduta di tensione nel silicio
VS dobbiamo risolvere l'equazione:

VGS = 0.5 V =

√
2ϵsqNAVS
Cox

+ VS (2)

Che da come unica soluzione possibile VS = 0.31 V.
Nel caso VSB = 0, avremo che la concentrazione di elettroni nel canale è data da:

ns = n0e
VS
VT

ns =
n2
i

NA

e
VS
VT = 3.6× 1015 m−3

Nel caso VSB = 2 V la VS non cambia, perché dipende dalla VGB, ma la concentrazione di
elettroni all'interfaccia è diminuita perché tra canale e source c'è una di�erenza di potenziale
di -2 V:

ns =
n2
i

NA

e
−VSB+VS

VT = 4.1× 109 m−3 (3)

2) Determiniamo prima la carica mobile nel canale:

Qn = q
∫ ∞

0
n(x)dx = qns

∫ ∞

0
e−

x
a

Qn = qnsa = 2.88× 10−11 C/m2

Ricordando l'espressione della corrente in zona lineare:

IDS = µnCox
W

L
(VGS − VTH)VDS = µn

W

L
QnVDS

IDS = 1.15 pA

Come potevamo aspettarci, è molto piccola.

3) Per VGS = 5 V siamo in inversione, quindi avremo:

IDS = µnCox
W

L
(VGS − VTH)VDS = 0.28 mA (4)

Evidentemente molto maggiore di quella sotto-soglia.

ESERCIZIO 3
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1) Si determini VB (o qVB in eV), e si esegua un gra�co delle bande.[3]
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Discutere le approssimazioni necessarie, e dimostrare che è pari a n. NOTA: la densità degli

stati è D(E) = 4π
(
2m∗

h2

) 3
2 , con m∗ = 1.08m0.[4]

3) Nella dimostrazione 2 è necessario approssimare la massa e�cace costante con l'energia.
Si discuta sulla validità di questa approssimazione, confrontandola con il caso della densità
equivalente degli stati.[5]

SOLUZIONE 3

1) Si può usare la relazione di equilibrio, oppure l'espressione della concentrazione n
assumendo che Ef = EC nella parte n+. Danno un numero approssimativamente uguale:

VB = V (n)− V (n+) = VT ln
n+

n
= 0.178 V

qVB = EC − Ef = VT ln
NC

ND

= 0.205 V

Entrambi i valori sono accettabili. Il gra�co delle bande risulta:

2) Impostiamo il conto e descriviamo le approssimazioni:

n(E > EB) =
∫ ∞

EB−EC

D(E)f(E)dE

n(E > EB) =
∫ ∞

EB−EC

4π
(
2m∗

h2

) 3
2 √

E − EC
1

1 + e
E−Ef

kT

dE

Approssimazione 1: la massa e�cace è pari a 1.08m0 per ogni energia. Approssimazione 2:
E − Ef ≪ EB − Ef , quindi l'1 al denominatore della Fermi-Dirac si può trascurare:

n(E > EB) = 4π
(
2m∗

h2

) 3
2
∫ ∞

EB−EC

√
E − ECe

−
E−Ef

kT dE (5)

Possiamo fare qualche passaggio, ricordando che Ef ≈ EC :

n(E > EB) = 4π
(
2m∗

h2

) 3
2
∫ ∞

EB

√
E − ECe

−E−EC
kT dE



x =
E − EC

kT
dx =

dE

kT

Se E = EB → x =
EB − EC

kT

n(E > EB) = 4π

(
2kTm∗

h2

) 3
2 ∫ ∞

EB−EC
kT

√
xe−xdx

Poiché siamo all'equilibrio, n(E > EB) nella parte n+ dovrà essere uguale a n nella parte
meno drogata.Nella �gura si rappresenta D(E)f(E) nella parte n+ e D(E)f(E) nella parte
n.

Le aree evidenziate devono essere uguali, ed in particolare quella nella parte n è data da:

n = NCe
−

EC−Ef
kT = 2

(
2πkTm∗

h2

) 3
2

e−
EC−EF

kT (6)

Ripercorrendo la dimostrazione, avremo che questa espressione proviene da:

n = 2

(
2πkTm∗

h2

) 3
2

e−
EC−Ef

kT

n = 4π

(
2kTm∗

h2

) 3
2

e−
EC−Ef

kT∫ ∞

0

√
xe−xdx∫ ∞

0

√
xe−xdx =

√
π

2

Nell'espressione per la parte n+ con E > EB abbiamo che l'integrale non è tra 0 e ∞, ma
inizia da EB−EC

kT
. Nella parte n+ avremo Ef = EC , ed EB coincide con la EC nella parte n:

e quindi avremo: ∫ ∞
EB−E

Cn+
kT

√
xe−xdx = e−

ECn−Ef
kT

∫ ∞

0

√
xe−xdx (7)

3) Quando calcoliamo la densità equivalente degli stati, usiamo la massa e�cace m∗ =
1.08m0 per gli elettroni, perché sappiamo che la gran parte degli elettroni occupa stati con E



molto vicina ad EC . Infatti, l'energia cinetica media degli elettroni è pari a overlineE − EC =
3/2kT = 39 meV a temperatura ambiente. In questo caso, integriamo su energie E > EB ≈
200 meV, e quindi l'approssimazione è molto peggiore.


