
1.1

Information Systems and Software

Systems Engineering (12CFU)

Master of Science in Computer Engineering

2017-18

Software Systems Engineering (6CFU)

The course is organized in two sections addressing different issues

in the design of software systems.

Information Systems (6CFU)

1.2

Information Systems (6CFU)

Prof. Cinzia Bernardeschi

Master of Science in Computer Engineering

2017-18

1.3

The "classic" view of Information systems (IS)

A computer(-based) information system is essentially an IS using computer technology

to carry out some or all of its planned tasks.

1.4

Course outline

Advanced database management systems topics to be used in the context of
information systems

Data Storage: File Structure and Indexing

Query Optimization

Transaction management: Concurrency control and Recovery

Distributed databases

Spatial and Geographic data (GIS)

Decision-Support Systems: Data warehousing

Faults, Errors, Failures: basic concepts

Stable storage implementation

Recovery System

Reliability and Availabilty measures

Book:

Silberschatz, Korth and Sudarshan
Database System Concepts
McGraw-Hill

These slides are a modified version of the slides of the book “Database System
Concepts”, 5th Ed., Silberschatz, Korth and Sudarshan. Original slides are
available at www.db-book.com

http://www.mhcollege.com/
http://www.db-book.com/

1.5

Database Management System (DBMS)

DBMS contains information about a particular enterprise

Collection of interrelated data (often referred to as the Data Base)

Set of programs to access the data

An environment that is both convenient and efficient to use

Database Applications:

Banking: all transactions

Airlines: reservations, schedules

Universities: registration, grades

Sales: customers, products, purchases

Online retailers: order tracking, customized recommendations

Manufacturing: production, inventory, orders, supply chain

Human resources: employee records, salaries, tax deductions

1.6

Purpose of Database Systems

In the early days, database applications were built directly on top of

file systems. The system stores permanent records into files.

Application programs to extract and add records to files.

A file-processing-system is supported by a conventional operating

system.

Drawbacks of using file systems to store data:

Data redundancy and inconsistency

 Multiple file formats, duplication of information in different files

(different programers created data/progr over a long period)

Difficulty in accessing data

 Need to write a new program to carry out each new task

Data isolation — multiple files and formats

Integrity problems

 Integrity constraints (e.g. account balance > 0) become

“buried” in program code rather than being stated explicitly

 Hard to add new constraints or change existing ones

1.7

Purpose of Database Systems (Cont.)

Drawbacks of using file systems (cont.)

Atomicity of updates (a computer is subject to failures)

 Failures may leave database in an inconsistent state with partial
updates carried out

 Example: Transfer of funds from one account to another should
either complete or not happen at all

Concurrent access by multiple users (for the sake of overall
performance of the system)

 Concurrent accessed needed for performance

 Uncontrolled concurrent accesses can lead to inconsistencies

– Example: Two people reading a balance and updating it at the
same time

Security problems

 Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

1.8

DBMS: Overall Structure

1.9

Levels of Abstraction

A major purpose of a DBMS is to provide a user with an abstract view
of data

Physical level: describes how a record (e.g., customer) is stored.

Logical level: describes data stored in database, and the relationships
among the data.

type customer = record

customer_id : string;
customer_name : string;
customer_street : string;
customer_city : integer;

end;

View level: application programs hide details of data types. Views can
also hide information (such as an employee’s salary) for security
purposes.

1.10

View of Data

An architecture for a database system

1.11

Instances and Schemas

Databases change over time as information is inserted and deleted.

Similar to types and variables in programming languages

Schema – the logical structure of the database

Example: The database consists of information about a set of customers and

accounts and the relationship between them)

Analogous to type information of a variable in a program

Physical schema: database design at the physical level

Logical schema: database design at the logical level

Instance – the actual content of the database at a particular point in time

Analogous to the value of a variable

Physical Data Independence – the ability to modify the physical schema without

changing the logical schema

Applications depend on the logical schema

In general, the interfaces between the various levels and components should

be well defined so that changes in some parts do not seriously influence others.

1.12

Data Models
Underlying the structure of a data base is the data model

A collection of conceptual tools for describing

Data

Data relationships

Data semantics

Data constraints

Entity-Relationship data model (E-R is based on the perception of real world)

Relational model (uses collection of tables to represent both data and

relationship among those data)

Object-based data models (Object-oriented and Object-relational)

Semistructured data model (XML- Extensible Markup Language- different
data of the same type have different attributes)

Other older models:

Network model
Hierarchical model

1.13

The Entity-Relationship Model

Models an enterprise as a collection of entities and relationships

Entity: a “thing” or “object” in the enterprise that is distinguishable

from other objects

 Described by a set of attributes

Relationship: an association among several entities

Represented diagrammatically by an entity-relationship diagram:

The key univocally identifies a record

1.14

Data Manipulation Language (DML)

Language for accessing and manipulating the data organized by the

appropriate data model

DML also known as query language

Two classes of languages

Procedural – user specifies what data is required and how to get

those data

Declarative (nonprocedural) – user specifies what data is

required without specifying how to get those data

SQL is the most widely used query language

1.15

Data Definition Language (DDL)

Specification notation for defining the database schema

Example: create table account (
account-number char(10),
balance integer)

DDL compiler generates a set of tables stored in a data dictionary

Data dictionary contains metadata (i.e., data about data)

Database schema

Data storage and definition language

 Specifies the storage structure and access methods used

Integrity constraints

 Domain constraints

 Referential integrity (references constraint in SQL)

 Assertions

Authorization

1.16

Relational Model

Example of tabular data in the relational model

Attributes

A relational database is based on the Relational model and uses a collection

of tables to represent both data and relationship among those data

Each table has multiple columns, each column has a unique name

1.17

A Sample Relational Database

which accounts

belong to which

customers

1.18

SQL

SQL: widely used non-procedural language

Example: Find the name of the customer with customer-id 192-83-7465

select customer.customer_name

from customer

where customer.customer_id = ‘192-83-7465’

Example: Find the balances of all accounts held by the customer with

customer-id 192-83-7465

select account.balance

from depositor, account

where depositor.customer_id = ‘192-83-7465’ and

depositor.account_number = account.account_number

Application programs generally access databases through one of

Language extensions to allow embedded SQL

Application program interface (e.g., ODBC/JDBC) which allow SQL

queries to be sent to a database

non-procedural:

“what data are needed withouth specifying how to get those data”

1.19

Database Design

The process of designing the general structure of the database:

User requirements – interaction with domain experts to carry out the specification
of user requirements

Conceptual design – Translate the requirements into a conceptual schema
Functional Requirements: user defines the kinds of operations that will be
performed on data. Review of the schema to meet functional requirements

Logical Design –

What attributes should we record in the database?

What relation schemas should we have and how should the attributes be
distributed among the various relation schemas?

Deciding on the database schema. Database design requires that we find a
“good” collection of relation schemas (no unnecessary redundancy, retrieve
information easily)
The most common approach is to use “functional dependencies”

Physical Design – Deciding on the physical layout of the database

1.20

Data Base Design for Banking Enterprise

Major characteristics

The bank is organised into branches. Each branch is located in a
particular city and is identified by a unique name. The bank monitors
the assets of each branch.

Bank customers are identified by their customer_id value. The bank
stores each customer’s name, and the street and the city where the
customer lives. Customers may have accounts and can take out
loans. A customer may be associated with a particular banker; who
may act as a loan officer or personal banker for that customer.

The bank offers two types of accounts: savings and checking
accounts. Accounts can be held by more than one customer, and a
customer can have more than one account. Each account is assigned
a unique account number. The bank mantains a record of each
account’s balance and the most recent date on which the account was
accessed by each customer holding the account. In addition each
savings account has an interest rate, and overdrafts are recorded for
each checking account.

1.21

Banking Enterprise

The bank provides its customers with loans. A loan originates at a particular

branch and can be held by one or more customers. A loan is identified by

unique loan number. For each loan, the bank keeps track of loan amount and

the loan payments. Although a loan-payment number does not uniquely identify

a particular payment among those for all the bank’s loans, a payment number

does identify a particular payment for a specific loan. The date and the amount

are recorded for each payment.

Bank employees are identified by their employee_id values. The bank

administration stores the name and telephone number of each employee, the

names of the employee’s dependents, and the employee_id number of the

employee’s manager. The bank also keeps track of the employee’s start date

and, thus, length of employment.

To keep the example small, we do not keep track of deposits and withdrawals from

savings and checking accounts, just as it keeps track of payments to loan

accounts.

1.22

E-R Diagram for a Banking Enterprise

1.23

Summary of Symbols Used in E-R Notation

1.24

Summary of Symbols (Cont.)

1.25

Entity Sets customer and loan

customer_id customer_ customer_ customer_ loan_ amount

name street city number

1.26

Relationship Set borrower

1.27

Relationship Sets (Cont.)

An attribute can also be property of a relationship set.

For instance, the depositor relationship set between entity sets
customer and account may have the attribute access-date

1.28

Degree of a Relationship Set

Refers to number of entity sets that participate in a relationship

set.

Relationship sets that involve two entity sets are binary (or

degree two). Generally, most relationship sets in a database

system are binary.

Relationship sets may involve more than two entity sets.

Relationships between more than two entity sets are rare. Most

relationships are binary. (More on this later.)

Example: Suppose employees of a bank may have jobs

(responsibilities) at multiple branches, with different jobs at

different branches. Then there is a ternary relationship set

between entity sets employee, job, and branch

1.29

Attributes

An entity is represented by a set of attributes, that is descriptive

properties possessed by all members of an entity set.

Domain – the set of permitted values for each attribute

Attribute types:

Simple and composite attributes.

Single-valued and multi-valued attributes

 Example: multivalued attribute: phone_numbers

Derived attributes

 Can be computed from other attributes

 Example: age, given date_of_birth

Example:

customer = (customer_id, customer_name,
customer_street, customer_city)

loan = (loan_number, amount)

1.30

Composite Attributes

1.31

E-R Design Decisions

The use of an attribute or entity set to represent an object.

Whether a real-world concept is best expressed by an entity set or

a relationship set.

The use of a ternary relationship versus a pair of binary

relationships.

The use of a strong or weak entity set.

The use of specialization/generalization – contributes to modularity

in the design.

The use of aggregation – can treat the aggregate entity set as a

single unit without concern for the details of its internal structure.

1.32

Reduction to Relation Schemas

Primary keys allow entity sets and relationship sets to be

expressed uniformly as relation schemas that represent the

contents of the database.

A database which conforms to an E-R diagram can be

represented by a collection of schemas.

For each entity set and relationship set there is a unique

schema that is assigned the name of the corresponding entity

set or relationship set.

Each schema has a number of columns (generally

corresponding to attributes), which have unique names.

1.33

The Banking Schema
branch = (branch_name, branch_city, assets)

customer = (customer_id, customer_name, customer_street, customer_city)

loan = (loan_number, amount)

account = (account_number, balance)

employee = (employee_id. employee_name, telephone_number, start_date)

dependent_name = (employee_id, dname)

account_branch = (account_number, branch_name)

loan_branch = (loan_number, branch_name)

borrower = (customer_id, loan_number)

depositor = (customer_id, account_number)

cust_banker = (customer_id, employee_id, type)

works_for = (worker_employee_id, manager_employee_id)

payment = (loan_number, payment_number, payment_date, payment_amount)

savings_account = (account_number, interest_rate)

checking_account = (account_number, overdraft_amount)

1.34

Representing Entity Sets as Schemas

A strong entity set reduces to a schema with the same attributes.

A weak entity set becomes a table that includes a column for the

primary key of the identifying strong entity set

payment =

(loan_number, payment_number, payment_date, payment_amount)

1.35

Representing Relationship Sets as

Schemas

A many-to-many relationship set is represented as a schema with

attributes for the primary keys of the two participating entity sets,

and any descriptive attributes of the relationship set.

Example: schema for relationship set borrower

borrower = (customer_id, loan_number)

1.36

Storage access: Buffer Manager

1.37

Storage access: Buffer Manager

1.38

Storage Access

A database file is partitioned into fixed-length storage units called

blocks. Blocks are units of both storage allocation and data

transfer.

Database system seeks to minimize the number of block transfers

between the disk and memory. We can reduce the number of

disk accesses by keeping as many blocks as possible in main

memory.

Buffer – portion of main memory available to store copies of disk

blocks.

Buffer manager – subsystem responsible for allocating buffer

space in main memory.

1.39

Buffer Manager

Programs call on the buffer manager when they need a block

from disk.

1. If the block is already in the buffer, buffer manager returns

the address of the block in main memory

2. If the block is not in the buffer, the buffer manager

1. Allocates space in the buffer for the block

1. Replacing (throwing out) some other block, if required,

to make space for the new block.

2. Replaced block written back to disk only if it was

modified since the most recent time that it was written

to/fetched from the disk.

2. Reads the block from the disk to the buffer, and returns

the address of the block in main memory to requester.

1.40

Buffer-Replacement Policies

Most operating systems replace the block least recently used

(LRU strategy)

Idea behind LRU – use past pattern of block references as a

predictor of future references

Queries have well-defined access patterns (such as sequential

scans), and a database system can use the information in a user’s

query to predict future references

LRU can be a bad strategy for certain access patterns involving

repeated scans of data

 For example: when computing the join of 2 relations r and s

by a nested loops

for each tuple tr of r do

for each tuple ts of s do

if the tuples tr and ts match …

Mixed strategy with hints on replacement strategy provided

by the query optimizer is preferable

1.41

Buffer-Replacement Policies (Cont.)

Pinned block – memory block that is not allowed to be written

back to disk.

Toss-immediate strategy – frees the space occupied by a block

as soon as the final tuple of that block has been processed

Most recently used (MRU) strategy – system must pin the block

currently being processed. After the final tuple of that block has

been processed, the block is unpinned, and it becomes the most

recently used block.

Buffer manager can use statistical information regarding the

probability that a request will reference a particular relation

E.g., the data dictionary is frequently accessed. Heuristic:

keep data-dictionary blocks in main memory buffer

Buffer managers also support forced output of blocks for the

purpose of recovery (more in Chapter 17)

1.42

File Organization

1.43

File Organization

The database is stored as a collection of files. Each file is a

sequence of records. A record is a sequence of fields.

One approach:

assume record size is fixed

each file has records of one particular type only

different files are used for different relations

This case is easiest to implement; will consider variable length

records later.

1.44

Fixed-Length Records

Simple approach:

Store record i starting from byte n  (i – 1), where n is the size of

each record.

Record access is simple but records may cross blocks

 Modification: do not allow records to cross block boundaries

Deletion of record i:

alternatives:

move records i + 1, . . ., n

to i, . . . , n – 1

move record n to i

do not move records, but

link all free records on a

free list

1.45

Record 2 Deleted and All Records Moved

1.46

Record 2 deleted and Final Record Moved

1.47

Free Lists

Store the address of the first deleted record in the file header.

Use this first record to store the address of the second deleted record,

and so on

Can think of these stored addresses as pointers since they “point” to

the location of a record.

More space efficient representation: reuse space for normal attributes

of free records to store pointers. (No pointers stored in in-use records.)

1.48

Variable-Length Records

Variable-length records arise in database systems in several

ways:

Storage of multiple record types in a file.

Record types that allow variable lengths for one or more

fields.

Record types that allow repeating fields (used in some

older data models).

1.49

Variable-Length Records: Slotted Page Structure

Slotted page header contains:

number of record entries

end of free space in the block

location and size of each record

Records can be moved around within a page to keep them contiguous

with no empty space between them; entry in the header must be

updated.

Pointers should not point directly to record — instead they should

point to the entry for the record in header.

1.50

Record Representation

Records with fixed length fields are easy to represent

Similar to records (structs) in programming languages

Extensions to represent null values

 E.g. a bitmap indicating which attributes are null

Variable length fields can be represented by a pair

(offset,length)

where offset is the location within the record and length is field length.

All fields start at predefined location, but extra indirection required

for variable length fields

Example record structure of account record

account_number

branch_name

balance

PerryridgeA-102 40010

1.51

Byte-String Representation of Variable-Length Records

Byte string representation

Attach an end-of-record () control character to the end of each record

Difficulty with deletion

Difficulty with growth

1.52

Fixed-Length Representation

Use one or more fixed length records:

reserved space

pointers

Reserved space – can use fixed-length records of a known

maximum length; unused space in shorter records filled with a null

or end-of-record symbol.

1.53

Pointer Method

Pointer method

A variable-length record is represented by a list of fixed-length

records, chained together via pointers.

Can be used even if the maximum record length is not known

1.54

Pointer Method (Cont.)

Disadvantage to pointer structure; space is wasted in all

records except the first in a a chain.

Solution is to allow two kinds of block in file:

Anchor block – contains the first records of chain

Overflow block – contains records other than those that

are the first records of chairs.

1.55

Organization of Records in Files

Heap – a record can be placed anywhere in the file where there

is space

Sequential – store records in sequential order, based on the

value of the search key of each record

Hashing – a hash function computed on some attribute of each

record; the result specifies in which block of the file the record

should be placed

Records of each relation may be stored in a separate file. In a

multitable clustering file organization records of several

different relations can be stored in the same file

Motivation: store related records on the same block to

minimize I/O

1.56

Sequential File Organization

Suitable for applications that require sequential processing of

the entire file

The records in the file are ordered by a search-key

1.57

Sequential File Organization (Cont.)

Deletion – use pointer chains

Insertion –locate the position where the record is to be inserted

if there is free space insert there

if no free space, insert the record in an overflow block

In either case, pointer chain must be updated

Need to reorganize the file

from time to time to restore

sequential order

1.58

Multitable Clustering File Organization

Store several relations in one file using a multitable clustering

file organization
Depositor

Customer

1.59

Multitable Clustering File Organization (cont.)

Multitable clustering organization of customer and depositor:

good for queries involving depositor customer, and for queries
involving one single customer and his accounts

bad for queries involving only customer

results in variable size records

Can add pointer chains to link records of a particular relation

1.60

Clustering File Structure With Pointer Chains

1.61

Data Dictionary Storage

Information about relations

names of relations

names and types of attributes of each relation

names and definitions of views

integrity constraints

User and accounting information, including passwords

Statistical and descriptive data

number of tuples in each relation

Physical file organization information

How relation is stored (sequential/hash/…)

Physical location of relation

Information about indices (Chapter 12)

Data dictionary (also called system catalog) stores metadata;

that is, data about data, such as

1.62

Data Dictionary Storage (Cont.)

Catalog structure

Relational representation on disk

specialized data structures designed for efficient access, in

memory

A possible catalog representation:

Relation_metadata = (relation_name, number_of_attributes,

storage_organization, location)

Attribute_metadata = (attribute_name, relation_name, domain_type,

position, length)

User_metadata = (user_name, encrypted_password, group)

Index_metadata = (index_name, relation_name, index_type,

index_attributes)

View_metadata = (view_name, definition)

