
1.1

Query processing and optimization

These slides are a modified  version of the slides  of the book 

“Database System Concepts” (Chapter 13 and 14), 5th Ed., McGraw-Hill,

by Silberschatz,  Korth and Sudarshan.  

Original slides are available at www.db-book.com

http://www.mhcollege.com/
http://www.db-book.com/
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DBMS: Overall Structure 
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Basic Steps in Query Processing

1. Parsing and translation: translate the query into its internal form. This is then 
translated into relational algebra. Parser checks syntax, verifies relations.

2. Optimization: A relational algebra expression may have many equivalent 
expressions. Generation of an evaluation-plan.

3. Evaluation: The query-execution engine takes a query-evaluation plan, 
executes that plan, and returns the answers to the query
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Query Processing : Optimization

A relational algebra expression may have many equivalent 

expressions

E.g., balance2500(balance(account)) 

is equivalent to

balance(balance2500(account))

Each relational algebra operation can be evaluated using one of 

several different algorithms

E.g., can use an index on balance to find accounts with balance 

< 2500,

or can perform complete relation scan and discard accounts 

with balance  2500

Annotated expression specifying detailed evaluation strategy is called 

an evaluation-plan.



1.5

Basic Steps

Query Optimization: Amongst all equivalent evaluation plans choose the one with 

lowest cost. 

Cost is estimated using

Statistical information from the database catalog

 e.g. number of tuples in each relation, size of tuples, 

number of distinct values for an attribute.

Statistics estimation for intermediate results to compute cost of complex 

expressions

Cost of individual operations

» Selection Operation

» Sorting 

» Join Operation 

» Other Operations

How to optimize queries, that is, how to find an evaluation plan with 

“good” estimated cost ?
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Evaluation plan
branch = (branch_name, branch_city, assets)

account = (account_number, branch_name, balance)

depositor = (customer_id, customer_name, account_number)

customer_name(branch_city=Brooklyn (branch      (account      depositor))))

customer_name ((branch_city=Brooklyn (branch))      (account      depositor))

A

A -

B

B -
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Evaluation plan (cont.)

An evaluation plan defines exactly what algorithm is used for each 
operation, and how the execution of the operations is coordinated 
(e.g., pipeline, materialization).
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Cost-based query optimization

Cost difference between evaluation plans for a query can be enormous

E.g. seconds vs. days in some cases

Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules

2. Annotate resultant expressions to get alternative query plans

3. Choose the cheapest plan based on estimated cost



Generating Equivalent Expressions
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Transformation of Relational Expressions

Two relational algebra expressions are said to be equivalent if the 

two expressions generate the same set of tuples on every legal 

database instance

Note: order of tuples is irrelevant

In SQL, inputs and outputs are multisets of tuples

Two expressions in the multiset version of the relational algebra 

are said to be equivalent if the two expressions generate the same 

multiset of tuples on every legal database instance. 

An equivalence rule says that expressions of two forms are 

equivalent

Can replace expression of first form by second, or vice versa
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Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a 

sequence of individual selections.

2. Selection operations are commutative.

3. Only the last in a sequence of projection operations is needed, the 

others can be omitted.

4. Selections can be combined with Cartesian products and theta joins.

a. (E1 X E2) =  E1  E2

b. 1(E1 2 E2) =  E1 1 2 E2

))(())((
1221

EE   =

))(()(
2121

EE   =

PL1 (PL2( … PLn (E))…)) = PL1(E)
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Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

E1       E2 = E2  E1

6. (a) Natural join operations are associative:

(E1      E2)    E3 = E1      (E2 E3)

(b) Theta joins are associative in the following manner:

(E1       1 E2)     2 3 E3 = E1        1 3 (E2 2 E3)

where 2 involves attributes from only E2 and E3.
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Pictorial Depiction of Equivalence Rules
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Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under 

the following two conditions:

(a)  When all the attributes in 0 involve only the attributes of one 

of the expressions (E1) being joined.

0(E1   E2) = (0(E1))     E2

(b) When  1 involves only the attributes of E1 and 2 involves  

only the attributes of E2.

1 (E1  E2) =  (1(E1))     ( (E2))
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Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation as 

follows:

(a) if  involves only attributes from L1  L2:

(b) Consider a join E1       E2. 

Let L1 and L2 be sets of attributes from E1 and E2, respectively.  

Let L3 be attributes of E1 that are involved in join condition , but are 

not in L1  L2, and

let L4 be attributes of E2 that are involved in join condition , but are 

not in L1  L2.

))(())(()( 2121 2121
EEEE LLLL

=  

)))(())((()( 2121 42312121
EEEE LLLLLLLL 

=
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Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative 

E1  E2 = E2  E1

E1  E2 = E2  E1

(set difference is not commutative).

10. Set union and intersection are associative.

(E1  E2)  E3 = E1  (E2  E3)

(E1  E2)  E3 = E1  (E2  E3)

11. The selection operation distributes over ,  and –. 

 (E1 – E2) =  (E1) – (E2)

and similarly for  and  in place of  –

Also:            (E1 – E2) = (E1) – E2

and similarly for  in place of  –, but not for 

12. The projection operation distributes over union

PL(E1  E2) = (PL(E1))  (PL(E2)) 
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Transformation: Pushing Selections down

Query:  Find the names of all customers who have an account at 

some branch located in Brooklyn.

Pcustomer_name(branch_city = “Brooklyn”

(branch     (account      depositor)))

Transformation using rule 7a.

Pcustomer_name

((branch_city =“Brooklyn” (branch)) 

(account depositor))

Performing the selection as early as possible reduces the size of the 

relation to be joined. 
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Example with Multiple Transformations

Query:  Find the names of all customers with an account at a 

Brooklyn branch whose account balance is over $1000.

Pcustomer_name((branch_city = “Brooklyn”  balance > 1000

(branch     (account      depositor)))

Transformation using join associatively (Rule 6a):

Pcustomer_name((branch_city = “Brooklyn”  balance > 1000

(branch     account))      depositor)

Second form provides an opportunity to apply the “perform 

selections early” rule, resulting in the subexpression

branch_city = “Brooklyn” (branch)      balance > 1000 (account)

Thus a sequence of transformations can be useful
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Multiple Transformations (Cont.)
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Transformation: Pushing Projections down

When we compute

(branch_city = “Brooklyn” (branch)    account )

we obtain a relation whose schema is:
(branch_name, branch_city, assets, account_number, balance)

Push projections using equivalence rules 8a and 8b; eliminate unneeded 
attributes from intermediate results to get:
Pcustomer_name ((
Paccount_number ( (branch_city = “Brooklyn” (branch)     account ))    depositor )

Performing the projection as early as possible reduces the size of the 
relation to be joined. 

Pcustomer_name((branch_city = “Brooklyn” (branch)     account)     depositor)
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Join Ordering Example

For all relations r1, r2, and r3,

(r1 r2)    r3  = r1 (r2 r3 )

(Join Associativity)

If r2 r3 is quite large and r1 r2 is small, we choose

(r1 r2)    r3 

so that we compute and store a smaller temporary relation.
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Join Ordering Example (Cont.)

Consider the expression

Pcustomer_name ((branch_city = “Brooklyn” (branch))

(account     depositor))

Could compute   account     depositor   first, and join result with 

branch_city = “Brooklyn” (branch)

but   account     depositor   is likely to be a large relation.

Only a small fraction of the bank’s customers are likely to have 

accounts in branches located in Brooklyn

it is better to compute

branch_city = “Brooklyn” (branch)    account

first.



Measures of Query Cost
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Measures of Query Cost

Cost is the total elapsed time for answering query

Many factors contribute to time cost

 disk accesses, CPU, or even network communication

Typically disk access is the predominant cost, and is also 

relatively easy to estimate.   Measured by taking into account

Number of seeks

Number of blocks read

Number of blocks written

 Cost to write a block is greater than cost to read a block 

– data is read back after being written to ensure that 

the write was successful
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Measures of Query Cost (Cont.)

In this course, for simplicity we just use the number of block transfers

from disk as the cost measures (we ignore other costs for simplicity)

tT – time to transfer one block

we do not include cost to writing output of the query to disk 

in our cost formulae

Several algorithms can reduce disk IO by using extra buffer space 

Amount of real memory available to buffer depends on other concurrent 

queries and OS processes, known only during execution

Required data may be buffer resident already, avoiding disk I/O

But hard to take into account for cost estimation
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Cost of individual operations

we assume that the buffer can hold only a few blocks of data, 

approximately one block for each relation

we use the number of block transfers from disk as  the cost measure 

we do not include cost to writing output of the query to disk 

in our cost formulae
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Selection Operation

File scan – search algorithms that locate and 

retrieve records in the file that fulfill a selection condition.

A1. Linear search.  Scan each file block and test all

records to see whether they satisfy the selection 

condition.

Cost estimate = br block transfers

 br number of blocks containing records 

from relation r

If selection is on a key attribute and an equality condition, can stop on finding 

record

 cost = (br /2) block transfers

Linear search can always be applied regardless of the ordering of the file and 

the selection condition.

E.g., balance<2500(account)

account file 
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Selection Operation (Cont.)

A2. Binary search.  Applicable if 

selection is an equality comparison on the attribute 

on which file is ordered (sequentially ordered 

file on the attribute of the selection). 

Assume that the blocks of a relation are stored 

contiguously 

Cost estimate (number of disk blocks to be scanned):

 cost of locating the first tuple by a binary search on the 

blocks

– log2(br)

 If there are multiple records satisfying selection

– Add transfer cost  of the number of blocks containing 

records that satisfy selection condition 

E.g., branch-name=“Mianus”(account)

account file

ordered on 

branch-name 

b0

b1

b2



1.29

Selections Using Indices

Index scan – search algorithms that use an index

selection condition must be on search-key of 
index.

A3. Primary index on candidate key, equality.  
Retrieve a single record that satisfies the corresponding
equality condition  

Cost = (hi + 1) 

A4. Primary index on non key, equality. 
Retrieve multiple records. 

Records will be on consecutive blocks

 Let b = number of blocks containing matching records

Cost = (hi + b)

A5. Equality on search-key of secondary index.

Retrieve a single record if the search-key is a 
candidate key

 Cost = (hi + 1) 

Retrieve multiple records if search-key is not a candidate key

 each of n matching records may be on a different block  

 Cost =  (hi + n)

– Can be very expensive!

E.g.,  branch-name=“Mianus”(account)

Primary index 

Secondary index 
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Selections Involving Comparisons
AV (r)   or   A  V(r) 

By using 

a linear file scan or binary search,

or by using indices in the following ways:

A6. Primary index, comparison. (Relation is sorted on A)

 For A  V(r) use index to find first tuple  v and scan relation

sequentially  from there

 For AV (r) just scan relation sequentially till first tuple > v; 

do not use index

E.g.  branch-name >= “Mianus”(account)

E.g.  branch-name <= “Mianus”(account)
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Selections Involving Comparisons
AV (r)   or   A  V(r) 

A.7 Secondary index, comparison. 

 For A  V(r) use index to find first index entry  v and scan index 

sequentially from there, to find pointers to records.

 For AV (r) just scan leaf pages of index finding pointers to records, till first 

entry > v

 In either case, retrieve records that are pointed to

– requires an I/O for each record

– Linear file scan may be cheaper

E.g.  balance >=500 (account)

E.g.  balance <=500 (account)
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Implementation of Complex Selections

Conjunction:  1 2. . . n(r)  

Conjunctive selection using one index.  

Select a combination of i and algorithms A1 through A7 that results in the 

least cost for i (r).

Test other conditions on tuple after fetching it into memory buffer.

Conjunctive selection using multiple-key index.  

Use appropriate composite (multiple-key) index if available.

Conjunctive selection by intersection of identifiers, using more indices.

Use corresponding index for each condition, and take intersection of all the 

obtained sets of record pointers. 

Then fetch records from file

If some conditions do not have appropriate indices, apply test in memory.
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Algorithms for Complex Selections

Disjunction:1 2 . . . n (r). 

Disjunctive selection by union of identifiers. 

Applicable if all conditions have available indices.  

 Otherwise use linear scan.

Use corresponding index for each condition, and take union of all the obtained 

sets of record pointers. 

Then fetch records from file

Negation:  (r)

Use linear scan on file

If very few records satisfy , and an index is applicable to 

 Find satisfying records using index and fetch from file
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Sorting

Sorting plays an important role in DBMS:

1) query can specify that the output be sorted

2) some operations can be implemented efficiently if the input

relations are ordered (e.g., join)

We may build an index on the relation, and then use the index to read 

the relation in sorted order.  Records are ordered logically rather than 

physically. May lead to one disk block access for each tuple.

Sometimes is desirable to order the records physically

For relations that fit in memory, techniques like quicksort can be used.  

For relations that don’t fit in memory, external 

sort-merge is a good choice. 
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External Sort-Merge

1. Create sorted runs.  

Let i be 0 initially.

Repeat 

(a)  Read M blocks of relation into memory

(b)  Sort the in-memory blocks

(c)  Write sorted data to run file Ri; 

(d) increment i.

until the end of the relation

Let the final value of i be N

Let M denote the number disk blocks whose 

contents can be buffered in main memory

Sorting records in a file
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External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). 

We assume (for now) that N < M. 

1. Use N blocks of memory to buffer input runs, and 1 block to 

buffer output. Read the first block of each run into its buffer 

page

2. repeat

1. Select the first record (in sort order) among all buffer 

pages

2. Write the record to the output buffer.  If the output buffer 

is full write it to disk.

3. Delete the record from its input buffer page.

If the buffer page becomes empty then

read the next block (if any) of the run into the buffer. 

3. until all input buffer pages are empty:
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External Sort-Merge (Cont.)

If N  M, several merge passes are required ((M-1)-way merge).

In each pass, contiguous groups of M - 1 runs are merged. 

A pass reduces the number of runs by a factor of M -1, and 

creates runs longer by the same factor. 

E.g.  If M=11, and there are 90 runs, one pass reduces 

the number of runs to 9, each 10 times the size of the 

initial runs

Repeated passes are performed till all runs have been 

merged into one.
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Example: External Sorting Using Sort-Merge
fr = 1 M = 3

- tranfer 3 blocks

- sort records 

- store in a run 
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External Merge Sort (Cont.)

Cost analysis:

Initial number of runs: br/M

Number of runs decrease of a factor M-1 in each merge pass.
Total number of merge passes required: logM–1(br/M).

Block transfers for initial run creation as well as in each pass is 2br

 for final pass, we don’t count write cost 

– we ignore final write cost for all operations since the output of 
an operation may be sent to the parent operation without 
being written to disk

 Thus total number of block transfers for external sorting:
2br  + 2br logM–1(br / M) - br 

br ( 2 logM–1(br / M) + 1)

( - br because we do not include cost to writing output of the query to disk)

In the example: 

12 ( 2 log2 (12 / 3) + 1) = 12 (2*2 + 1) = 60 block transfers
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Join Operation

Several different algorithms to implement joins

Nested-loop join

Block nested-loop join

Indexed nested-loop join

Merge-join

Hash-join

Choice based on cost estimate

Examples use the following information

Customer: Number of records 10.000        Number of blocks  400

Depositor: Number of records   5.000         Number of blocks  100  

customer = (customer_name, customer_street, customer_city, …)

depositor = (customer_name, account_number,….)

customer       depositor                 natural join 

customer     customer.customer_iname = depositor.customer_iname   depositor             theta join
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Nested-Loop Join

To compute the theta join         r  s

for each tuple tr in r do begin

for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join condition 

if they do, add tr • ts to the result.

end

end

r is called the outer relation and s the inner relation of the join.

Requires no indices and can be used with any kind of join condition.

Expensive since it examines every pair of tuples in the two relations. 

r s
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Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one block of each 
relation, the estimated cost is 

nr  bs + br block transfers

If the smaller relation fits entirely in memory, use 
that as the inner relation.

Reduces cost to br + bs block transfers

Assuming worst case memory availability cost estimate is

with depositor as outer relation:

 5000  400 + 100 = 2,000,100 block transfers,

with customer as the outer relation 

 10000  100 + 400 = 1,000,400 block transfers

If smaller relation (depositor) fits entirely in memory, the cost estimate will be 
500 block transfers.

Block nested-loops algorithm (next slide) is preferable.

sr
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Block Nested-Loop Join

Variant of nested-loop join in which every block of inner relation is 

paired with every block of outer relation.

for each block Br of r do begin

for each block Bs of s do begin

for each tuple tr in Br do begin

for each tuple ts in Bs do begin

Check if (tr,ts) satisfy the join condition 

if they do, add tr • ts to the result.

end

end

end

end

r s
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Block Nested-Loop Join (Cont.)

Worst case estimate (if there is enough memory only to hold one 

block of each relation):  br  bs + br block transfers

Each block in the inner relation s is read once for each block in 

the outer relation (instead of once for each tuple in the outer 

relation

Assuming worst case memory availability cost estimate is

 with depositor as outer relation:

– 100 + 100*400 = 40,100 block transfers   (outer the smallest
more convenient)

 with customer as the outer relation 

– 400 + 400*100 = 40,400 block transfers

Best case (the smaller relation fits entirely in memory ):

br + bs block transfers.

Improvements to nested loop and block nested loop algorithms:

Use index on inner relation if available (next slide)
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Indexed Nested-Loop Join

Index lookups can replace file scans if

join is an equi-join or natural join and

an index is available on the inner relation’s join attribute

 Can construct an index just to compute a join.

For each tuple tr in the outer relation r, use the index to look up tuples in s

that satisfy the join condition with tuple tr.

Worst case:  buffer has space for only one block of r, and, for each tuple 

in r, we perform an index lookup on s.

Cost of the join:  br + nr  c

Where c is the cost of traversing index and fetching all matching s

tuples for one tuple or r

c can be estimated as cost of a single selection on s using the join 

condition.

If indices are available on join attributes of both r and s,

use the relation with fewer tuples as the outer relation.

r
s

index
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Example of Nested-Loop Join Costs

Compute depositor     customer, with depositor as the outer relation.

Let customer have a primary B+-tree index on the join attribute 

customer-name, which contains 20 entries in each index node.

Since customer has 10,000 tuples, the height of the tree is 

 log20 10,000  = 4, and one more access is needed to find the actual 

data

depositor has 5000 tuples

Cost of indexed nested loops join

100 + 5000 * 5 = 25,100  block transfers

customer = (customer_name, customer_street, customer_city, …)

depositor = (customer_name, account_number)

Records  Blocks

10.000   400 

5000    100  

depositor customer

index

records=10.000 

blocks=400

records = 5000

blocks=100  
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Merge-Join

1. Sort both relations on their join attribute (if not already sorted on the join 

attributes).

2. Merge the sorted relations to join them

1. Join step is similar to the merge stage of the sort-merge algorithm.  

2. Main difference is handling of duplicate values in join attribute — every 

pair with same value on join attribute must be matched

3. Detailed algorithm in book
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Merge-Join (Cont.)

Can be used only for equi-joins and natural joins

Each block needs to be read only once (assuming all tuples for any given 

value of the join attributes fit in memory

Thus the cost of merge join is: 

br + bs block transfers

+ the cost of sorting if relations are unsorted.
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Hash-Join

Applicable only for equi-joins and natural joins.

A hash function h is used to partition tuples of both relations 

h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the 

common attributes of r and s used in the natural join. 

r0, r1, . . ., rn denote partitions of r tuples

 Each tuple tr  r is put in partition ri where i = h(tr [JoinAttrs]).

s0,, s1. . ., sn denotes partitions of s tuples

 Each tuple ts s is put in partition si, where i = h(ts [JoinAttrs]).

Note: In book,  ri   is denoted as Hri, si is denoted as Hsi  and

n is denoted as nh. 
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Hash-Join (Cont.)
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Hash-Join (Cont.)

r  tuples in ri need only to be compared with s tuples in si Need 

not be compared with s tuples in any other partition, since:

an r tuple and an s tuple that satisfy the join condition will 

have the same value for the join attributes.

If that value is hashed to some value i, the r tuple has to be in 

ri and the s tuple in si.
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Hash-Join Algorithm

1. Partition the relation s using hashing function h.  When partitioning 

the relation s, h is defined in such a way that partitions fit in memory

2. Partition r with the same hash function.

3. For each i:

(a) Load si into memory and build an in-memory hash index on it 

using the join attribute.  This hash index uses a different hash 

function h’ than the earlier one h.

(b) Read the tuples in ri from the disk one by one.  For each tuple 

tr locate each matching tuple ts in si using the in-memory hash 

index.  Output the concatenation of their attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build relation and r is called the probe relation.

The hash index is built in memory, there is no need to access the disk to retrieve 

the tuples.
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Hash-Join algorithm (Cont.)
The value n and the hash function h is chosen such that each si should fit 

in memory(build relation).

The probe relation partitions ri (probe relation)need not fit in memory

Use the smaller relation as the build relation.

Partitioning of the relations requires complete reading and 

writing of r and s: 2(br + bs) block transfers

Read and probe phases read each of the partitions once:

(br + bs) block transfers 

Number of blocks of the partition could be more than (br + bs) as result of partially 

filled blocks that must be written and read back :

2n block transfers for each relation

Cost of hash join is

3(br + bs) + 4  n  block transfers 

n is usually quite small compared to (br + bs) and can be ignored

Cost of Hash-Join
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Example of Cost of Hash-Join

Assume that memory size that can be used for a partition 

of the probe relation is 20 blocks

bcustomer = 400  and bdepositor= 100.

depositor is to be used as build relation.  Partition it into five partitions, 

each of size 20 blocks.  This partitioning can be done in one pass.

Similarly, partition customer into five partitions, each of size 80.  

This is also done in one pass.

Therefore total cost, ignoring cost of writing partially filled blocks:

3(100 + 400) = 1500 block transfers

customer     depositor
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Complex Joins

Join with a conjunctive condition:

r     1  2...   n s

Either use nested loops/block nested loops, or

Compute the result of one of the simpler joins r    i s

 final result comprises those tuples in the intermediate result 

that satisfy the remaining conditions

1 . . .  i –1  i +1  . . .  n

Join with a disjunctive condition

r  1  2 ...  n s 

Either use nested loops/block nested loops, or

Compute as the union of the records in individual joins r       i s:

(r      1 s)  (r     2 s)  . . .  (r     n s) 
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Other Operations

Duplicate elimination can be implemented via hashing or sorting.

On sorting duplicates will come adjacent to each other, and all but 

one set of duplicates can be deleted.  

Optimization: duplicates can be deleted during run generation as 

well as at intermediate merge steps in external sort-merge.

Hashing is similar – duplicates will come into the same bucket.

Projection:

perform projection on each tuple 

followed by duplicate elimination. 
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Other Operations : Aggregation

Aggregation can be implemented in a manner similar to duplicate 

elimination.

E.g.,  select branch_name, sum (balance)

from account 

group by branch_name

Sorting or hashing can be used to bring tuples in the same group 

together, and then the aggregate functions can be applied on each 

group.

Optimization: combine tuples in the same group during run 

generation and intermediate merges, by computing partial 

aggregate values

 For count, min, max, sum: keep aggregate values on tuples 

found so far in the group.  

– When combining partial aggregate for count, add up the 

aggregates

 For avg, keep sum and count, and divide sum by count at the 

end
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Other Operations : Set Operations

Set operations (,  and ⎯):  we can implement these operations by first 
sorting both relations and then scanning once through each of the sorted 
relations.

We can either use variant of merge-join after sorting, or variant of hash-join.

E.g., Set operations using hashing:

1. Partition both relations using the same hash function

2. Process each partition i as follows.  

1. Using a different hashing function, build an in-memory hash index 
on ri.

2. Process si as follows

r  s:  

1. Add tuples in si to the hash index if they are not already in it.  

2. At end of si add the tuples in the hash index to the result.

r  s: 

1. output tuples in si to the result if they are already there in the 
hash index

r – s:

1. for each tuple in si, if it is there in the hash index, delete it 
from the index. 

2. At end of si add remaining tuples in the hash index to the 
result. 
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Evaluation of Expressions

So far: we have seen algorithms for individual operations

Alternatives for evaluating an entire expression tree

Materialization:  generate results of an expression whose inputs 

are relations or are already computed, materialize (store) it on 

disk.  Repeat.

Pipelining:  pass on tuples to parent operations even as an 

operation is being executed
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Materialization

Materialized evaluation:  evaluate one operation at a time, 

starting at the lowest-level.  Use intermediate results 

materialized into temporary relations to evaluate next-level 

operations.

E.g., in figure below, compute and store

then compute the store its join with customer, and finally 

compute the projections on customer-name. 

)(2500 accountbalance 
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Materialization (Cont.)

Materialized evaluation is always applicable

Cost of writing results to disk and reading them back can be quite high

Our cost formulas for operations ignore cost of writing results to 

disk, so

 Overall cost  =  Sum of costs of individual operations + 

cost of writing intermediate results to disk
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Pipelining
Pipelined evaluation : evaluate several operations simultaneously, 

passing the results of one operation on to the next.

E.g., in previous expression tree, don’t store result of

instead, pass tuples directly to the join..  Similarly, don’t store result of 

join, pass tuples directly to projection. 

Much cheaper than materialization: no need to store a temporary relation 

to disk.

Pipelining may not always be possible – e.g., sort, hash-join.

The inputs to the operations are not available all at once for processing.

Each operation at the bottom of a pipeline continually generates output

tuples and put them in its output buffer, until the buffer is full. When an 

operation uses tuples from its input buffer, removes tuples from the buffer. 

)(2500 accountbalance



Statistics for Cost Estimation
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Statistical Information for Cost Estimation

nr:  number of tuples in a relation r.

br: number of blocks containing tuples of r.

lr: size of a tuple of r.

fr: the number of tuples of r that fit into one block (blocking factor of r) with
lb size of a block

if tuples of r are stored together physically in a file, then

V(A, r): number of distinct values that appear in r for attribute A. 
This value is the same as the size of A(r).
If A is a key for relation r, V(A, r)= nr

min (A,r)  and   max(A,r)
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The DBMS catalog stores the following statistical information. 

For each relation r, 

lr

lb
fr =
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Selection Size Estimation

A=v(r)   equality predicate

 c = nr / V(A,r) 

 c = 1  if equality condition on a key attribute 

AV(r) (case of A  V(r) is symmetric)

If min(A,r) and max(A,r) are available in catalog

 c = 0    if v < min(A,r)

 c = nr   if v >= max(A,r)

 c =

In absence of statistical information c is assumed to be nr / 2.

),min(),max(

),min(
.

rArA

rAv
nr

−

−

The size estimate of the result of a selection operation depends on the 

selection predicate.

Let c denote  the estimated number of tuples satisfying the condition. 
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Size Estimation of Complex Selections

Let si the size of i (r), the probability that a tuple in the relation r

satisfies I is given by si /nr 

Conjunction:  1 2. . .  n (r).  Assuming indepedence, estimate of

tuples in the result is:

Disjunction:1 2 . . .  n (r). Estimated number of tuples:

Negation:  (r). Estimated number of tuples:

nr – size((r))

n

r

n
r
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Join Operation:  Running Example

Running example:     depositor customer      

Catalog information for join examples:

ncustomer = 10,000

fcustomer = 25  implies that 

bcustomer =  10000/25  = 400.

ndepositor = 5000.

fdepositor = 50 implies that 

bdepositor =  5000/50  = 100.

V(customer_name, customer) = 10000 (primary key!)

V(customer_name, depositor) = 2500, which implies that , on average, each 
customer in depositor has two accounts.

Also assume that customer_name in depositor is a foreign key on customer.

depositor

S 

customer

R

5000

10000

depositor = (customer_name, account_number, ….., A)

customer= (customer_name, customer_street, cusytomer_city, ……., A)

customer_name,  ………..
customer_name, ……



1.68

Estimation of the Size of Joins

The Cartesian product r x s contains nr .ns tuples; each tuple occupies sr + ss bytes.

R set of attributes of r ; S set of attributes of s. 

If R  S = , then r s is the same as r  x s. 

If R  S is a key for R, then a tuple of s will join with at most one tuple from r

therefore, the number of tuples in r     s is no greater than the number of 
tuples in s:

tuples in  r s <= ns

If R  S is a foreign key in S referencing R, then the number of tuples in 
r s is exactly the same as the number of tuples in s.

In the example query depositor     customer, customer_name in depositor is a 
foreign key of customer

hence, the result has exactly ndepositor tuples, which is 5000

tuples in  r s = ns
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Estimation of the Size of Joins (Cont.)

If R  S = {A} is not a key for R or S.

If we assume that every tuple t in R produces tuples in R    S, the 

number of tuples in R S is estimated to be:

If the reverse is true, the estimate obtained will be:

The lower of these two estimates is probably the more accurate one

min (                      ,                 )

nr .      ns

V(A,s)

ns .      nr

V(A, r)

nr .    ns

V(A,s)

ns .   nr

V(A, r)
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Estimation of the Size of Joins (Cont.)

Compute the size estimates for depositor    customer without using 

information about foreign keys:

V(customer_name, depositor) = 2500, and

V(customer_name, customer) = 10000

The two estimates are 

10000* 5000/2500 = 20,000 

and

5000 * 10000/10000 = 5000

We choose the lower estimate, which in this case, is the same as 

our earlier computation using foreign keys.



1.71

Size Estimation for Other Operations

Projection:  estimated size of     A(r)   =   V(A,r)

AB(r)   =  min{ V(A,r)*V(B,r),   nr }

Aggregation : estimated size of AgF(r)   = V(A,r)

Set operations

For unions/intersections of selections on the same relation: rewrite and 

use size estimate for selections

 1 (r)  2 (r)  can be rewritten as 1  2 (r)

 1 (r)  2 (r)  can be rewritten as 1  2 (r)

For operations on different relations:

 estimated size of r  s = size of r + size of s.   

 estimated size of r  s  = minimum size of r and size of s.

 estimated size of r – s = r.

 All the three estimates may be quite inaccurate, but provide upper 

bounds on the sizes.
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Estimation of Number of Distinct Values

of an attribute: V(A, r’)

Selections:  (r) 

If  forces A to take a specified value: V(A, (r)) = 1.

 e.g., A = 3

If  forces A to take on one of a specified set of values: 
V(A, (r)) = number of specified values.

 (e.g., (A = 1 V A = 3 V A = 4 )), 

If the selection condition  is of the form A op r

V(A, (r)) = V(A, r) * s

where s is the selectivity factor of the selection

if AV(r)  then s =

In all the other cases: use approximate estimate of

min(V(A,r), n (r) )

More accurate estimate can be got using probability theory, but this one works fine generally

),min(),max(

),min(

rArA

rAv

−

−
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Estimation of Distinct Values (Cont.)

Joins: r      s

If all attributes in A are from r

estimated V(A, r     s) = min (V(A,r), n r    s)

If A contains attributes A1 from r and A2 from s, then estimated 

V(A,r     s) = 

min(V(A1,r)*V(A2 – A1,s), V(A1 – A2,r)*V(A2,s), nr     s)

More accurate estimate can be got using probability theory, but 

this one works fine generally

A1 A2
A1 A2 = ,/

DEFK                      r BCDE                    s

A = A1   A2
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Estimation of Distinct Values (Cont.)

Estimation of distinct values are straightforward for projections.

They are the same in A (r) as in r. 

The same holds for grouping attributes of aggregation.



Choice of evaluation plans
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Evaluation plan
branch = (branch_name, branch_city, assets)

account = (account_number, branch_name, balance)

depositor = (customer_id, customer_name, account_number)

customer_name(branch_city=Brooklyn and balace < 1000 (branch      (account      depositor))))

(1)
(2)(2)
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Evaluation plan

(3)



1.78

Enumeration of Equivalent Expressions

Query optimizers use equivalence rules to systematically generate 

expressions equivalent to the given query expression

Can generate all equivalent expressions as follows: 

Repeat

 apply all applicable equivalence  rules on every equivalent 

expression found so far

“If one sub-expression satisfies one side of an equiv. rule, this 

sub-expression is substituted by the other side of the rule”

 add newly generated expressions to the set of equivalent 

expressions 

Until no more new expressions ca be generated

The above approach is very expensive in space and time
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Implementing Transformation Based 

Optimization

Space requirements reduced by sharing common sub-expressions

 E.g. when applying join commutativity, subtrees below are the 

same and can be shared using pointers

Time requirements reduced by not generating all expressions

that can be generated with equivalence rules

OPTIMIZER:  takes cost estimates of evaluation plans into 

account and avoids examining some of the expressions

E1 E2
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Evaluation Plans

Point 1. choosing the cheapest algorithm for each operation 

independently may not yield best overall algorithm.  

E.g.

 merge-join may be costlier than hash-join, but may provide a 

sorted output which reduce  the cost for a later operation

like elimination of duplicates.

 nested-loop join may provide opportunity for pipelining

TO CHOOSE THE BEST ALGORITHM, WE MUST CONSIDER

EVEN NON OPTIMAL ALGORITHM FOR INDIVIDUAL 

OPERATIONS

Point 2. any ordering of operations that ensures that operation lower in the 

tree are executed before operation higher in the tree can be chosen
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Different expressions for join

Different expressions for join

r1 r2     r3

(r1,r2) r3 (r1,r3) r2 (r2,r3) r1

(r2,r1) r3 (r3,r1) r2 (r3,r2) r1 12 different expressions

r3 (r1,r2) r2 (r1,r3) r1(r2,r3) 

r3 (r2,r1) r2(r3,r1) r1(r3,r2) 

Consider finding the best join-order for r1 r2      . . . rn.

There are (2(n – 1))! / (n – 1)! different join orders for above expression.  

n = 3, the number is (4!/2!) = 12 

n = 7, the number is 665280

n = 10, the number is greater than 176 billion!

Consider (r1 r2     r3)    r4 r5

The result of the join between r1, r2 and r3, is joined to r4 and r5: 12 * 12 different 

expressions BUT if we have found the best ordering between r1, r2 and r3, we may 

ignore all costlier orders of r1, r2 and r3: 12 + 12 different expressions 
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Dynamic Programming in Optimization
Find best join tree for a set of n relations

To find best plan for a set S of n relations, consider all possible 

plans of the form:  S1 (S – S1) where S1 is any non-empty 

subset of S.

Recursively compute costs for joining subsets of S to find the cost 

of each plan.  

Choose the cheapest of the alternatives.

Base case for recursion:  single relation Ri  access plan

 Apply all selections on Ri using best choice of indices on Ri

When plan for any subset is computed, store it and reuse it when it 

is required again, instead of recomputing it

 Dynamic programming

Using dynamic programming, the least-cost join order for any subset of  

S={R1, R2, . . . Rn} is computed only once and stored for future use. 
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Join Order Optimization Algorithm

procedure findbestplan(S)

if (bestplan[S].cost  )

return bestplan[S]

// else bestplan[S] has not been computed earlier, compute it now

if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way 

of accessing S  /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1  S

P1= findbestplan(S1)

P2= findbestplan(S - S1)

A = best algorithm for joining results of P1 and P2

cost = P1.cost + P2.cost + cost of A

if cost < bestplan[S].cost 

bestplan[S].cost = cost

bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”

return bestplan[S]
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Dynamic Programming in Optimization

BP(r1,r2,r3) = 

1) S1 = r1         S-S1 = r2, r3

BP(r1) 

BP(r2,r3) 

BP(r2) BP(r3) Alg. Join 

Alg Join 

2) S1= r2          S-S1 = r1, r3

BP(r2)

BP(r1,r3) 

BP(r1) BP(r3) Alg. Join

Alg Join 

3) S1= r3          S-S1 = r1, r2

BP(r3)

BP(r1,r2) 

BP(r1) BP(r2) Alg. Join

Alg Join 

r1 r2     r3    With dynamic programming time complexity of 
optimization of join is O(3n).  

With n = 10, this number is 59000 
instead of 176 billion!

4) S1 = r1,r2         S-S1 = r3

BP(r1,r2) 

BP(r3) 

• BP(r2) BP(r3) Alg. Join

•

Alg Join 

………………………………..
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Left Deep Join Trees

Some optimizers consider only those join orders where the 

right operand of the join is an initial relation (left-deep join 

trees), not the result of an intermediate join. For example IBM  

SystemR

Only one input to each join is pipelined 
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Cost of Optimization

To find best left-deep join tree for a set of n relations:

Consider n alternatives with one relation as right-hand side input 
and the other relations as left-hand side input.

Modify optimization algorithm:

 Replace “for each non-empty subset S1 of S such that S1  S”

 By:   for each relation r in S
let S1 = S – r .

If only left-deep trees are considered, time complexity of finding best join 
order is O(n 2n)

Cost-based optimization is expensive, but worthwhile for queries on 
large datasets (typical queries have small n, generally < 10)
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Interesting Sort Orders

Consider the expression (r1 r2)     r3 (with A as common attribute)

An interesting sort order is a particular sort order of tuples that could 

be useful for a later operation

Using merge-join to compute r1 r2 may be costlier than hash join 

but generates result sorted on A

Which in turn may make merge-join with r3 cheaper, which may 

reduce cost of join with r3 and minimizing overall cost 

Sort order may also be useful for order by and for grouping

Not sufficient to find the best join order for each subset of the set of n

given relations

must find the best join order for each subset, 

for each interesting sort order

Simple extension of earlier dynamic programming algorithms

Usually, number of interesting orders is quite small and doesn’t 

affect time/space complexity significantly
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Heuristic Optimization

Cost-based optimization is expensive, even with dynamic programming.

Systems may use heuristics to reduce the number of choices that must 

be made in a cost-based fashion.

Heuristic optimization transforms the query-tree by using a set of rules 

that typically (but not in all cases) improve execution performance:

Perform selection early (reduces the number of tuples)

Perform projection early (reduces the number of attributes)

Perform most restrictive selection and join operations (i.e. with 

smallest result size) before other similar operations.
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Futher reduce cost

When examining a plan for an expression, if a part of the expression is 

costlier than the cheapest evaluation plan for full expression examined 

earlier, we can terminate

No full expression containing such subexpression must be examined 

STRATEGY:

- Heuristic guess of a good plan; evaluate the plan

- Only a few competitive plans will require full analysis 
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Structure of Query Optimizers

Many optimizers considers only left-deep join orders.

Plus heuristics to push selections and projections down the query 

tree

Reduces optimization complexity and generates plans amenable to 

pipelined evaluation.

Heuristic optimization used in some versions of Oracle:

Left deep join starting from a different relation

Repeatedly pick “best” relation to join next 

 Pick best among the relations

Intricacies of SQL complicate query optimization

E.g. nested subqueries
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Query Optimizers (Cont.)

Even with the use of heuristics, cost-based query optimization 

imposes a substantial overhead.

But is worth it for expensive queries

Optimizers often use simple heuristics for very cheap queries, 

and perform exhaustive enumeration for more expensive 

queries 

OPTIMIZE THE QUERY ONCE AND STORE THE QUERY PLAN
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The process of finding a good strategy for processing a query is called query 
optimization

There are a number of equivalence rules that can be used to transform an 
expression into an equivalent one (execution plan of a query). 

For evaluating cost of a query the system stores statistics for each relation 
(these statistics allow to estimate size and cost of intermediate results):

Number of tuples in the relation

Size of records in the relation

Number of distinct values that appear in the relation for a particular 
attribute

Presence of indices has a signigficant influence on the choice of a query 
processing strategy

Heuristics are used to reduce the number of plans considered. 
Heuristics include Push selection down and Push projection down rules

Query optimizer finds a “good” solution for processing the query

MySQL 

update statistics

EXPLAIN select attributes from tables where condition; 

Summary


