Indexing

These slides are a modified version of the slides of the book "Database System Concepts" (Chapter 12), 5th Ed., McGraw-Hill, by Silberschatz, Korth and Sudarshan.

Original slides are available at www.db-book.com

Basic Concepts

- Indexing mechanisms used to speed up access to desired data.
 - E.g., author catalog in library
- Search Key attribute to set of attributes used to look up records in a file.
- An index file consists of records (called index entries) of the form

- Index files are typically much smaller than the original file
- Two basic kinds of indices:
 - Ordered indices: search keys are stored in sorted order
 - Hash indices: search keys are distributed uniformly across "buckets" using a "hash function".

Index Evaluation Metrics

- Access types supported efficiently. E.g.,
 - records with a specified value in the attribute
 - or records with an attribute value falling in a specified range of values.
- Access time
- Insertion time
- Deletion time
- Space overhead

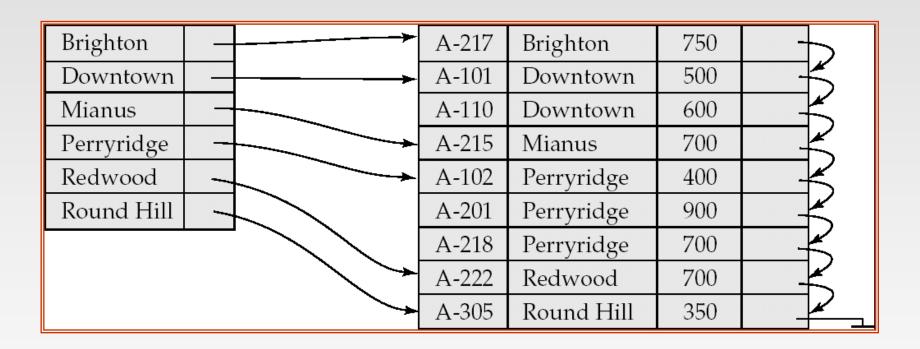
Ordered Indices

- In an ordered index, index entries are stored sorted on the search key value. E.g., author catalog in library.
- Primary index: in a sequentially ordered file, the index whose search key specifies the sequential order of the file.
 - Also called clustering index
 - The search key of a primary index is usually but not necessarily the primary key.
- Secondary index: an index whose search key specifies an order different from the sequential order of the file. Also called non-clustering index.

Index-sequential file: ordered sequential file with a primary index.

Dense Index Files

Dense index — Index record appears for every search-key value in the file.



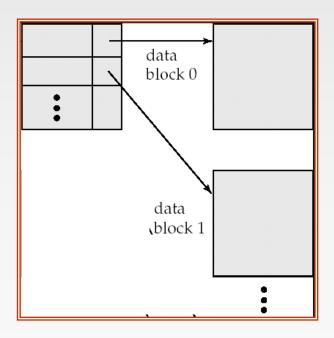
Sparse Index Files

- Sparse Index: contains index records for only some search-key values.
 - Applicable when records are sequentially ordered on search-key
- To locate a record with search-key value K we:
 - Find index record with largest search-key value < K
 - Search file sequentially starting at the record to which the index record points

Brighton		A-217	Brighton	750	
Mianus		A-101	Downtown	500	\longrightarrow
Redwood		A-110	Downtown	600	
	$\overline{}$	A-215	Mianus	700	
		A-102	Perryridge	400	
		A-201	Perryridge	900	<u> </u>
		A-218	Perryridge	700	
	*	A-222	Redwood	700	
		A-305	Round Hill	350	

Sparse Index Files (Cont.)

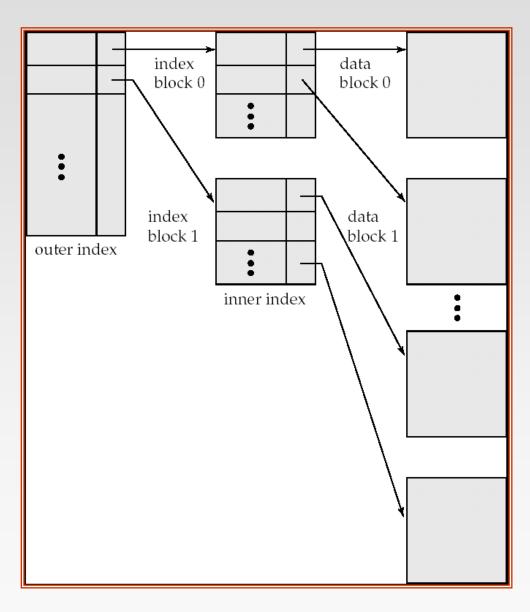
- Compared to dense indices:
 - Less space and less maintenance overhead for insertions and deletions.
 - Generally slower than dense index for locating records.
- Good tradeoff: sparse index with an index entry for every block in file, corresponding to least search-key value in the block.



Multilevel Index

- If primary index does not fit in memory, access becomes expensive.
- Solution: treat primary index kept on disk as a sequential file and construct a sparse index on it.
 - outer index a sparse index of primary index
 - inner index the primary index file
- If even outer index is too large to fit in main memory, yet another level of index can be created, and so on.
- Indices at all levels must be updated on insertion or deletion from the file.

Multilevel Index (Cont.)



Index Update: Deletion

- If deleted record was the only record in the file with its particular searchkey value, the search-key is deleted from the index also.
- Single-level index deletion:
 - Dense indices deletion of search-key:similar to file record deletion.
 - Sparse indices
 - if an entry for the search key exists in the index, it is deleted by replacing the entry in the index with the next search-key value in the file (in search-key order).
 - If the next search-key value already has an index entry, the entry is deleted instead of being replaced.

Brighton		A-217	Brighton	750	
Mianus		A-101	Downtown	500	
Redwood		A-110	Downtown	600	
	$\overline{}$	A-215	Mianus	700	
		A-102	Perryridge	400	
		A-201	Perryridge	900	
		A-218	Perryridge	700	
	¥	A-222	Redwood	700	
		A-305	Round Hill	350	

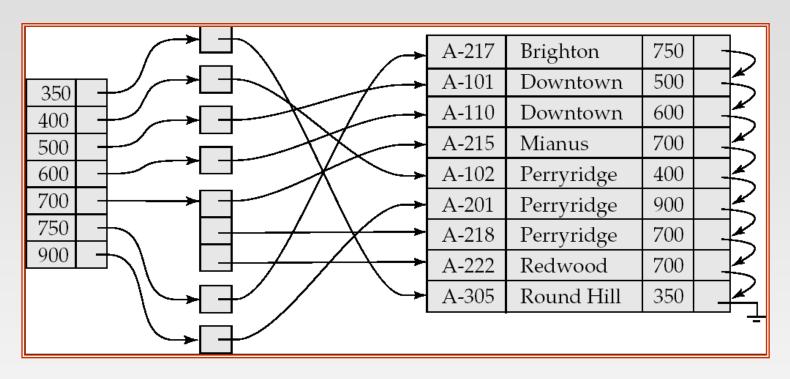
Index Update: Insertion

- Single-level index insertion:
 - Perform a lookup using the search-key value appearing in the record to be inserted.
 - Dense indices if the search-key value does not appear in the index, insert it.
 - Sparse indices if index stores an entry for each block of the file, no change needs to be made to the index unless a new block is created.
 - If a new block is created, the first search-key value appearing in the new block is inserted into the index.
- Multilevel insertion (as well as deletion) algorithms are simple extensions of the single-level algorithms

Secondary Indices

- Frequently, one wants to find all the records whose values in a certain field (which is not the search-key of the primary index) satisfy some condition.
 - Example 1: In the account relation stored sequentially by account number, we may want to find all accounts in a particular branch
 - Example 2: as above, but where we want to find all accounts with a specified balance or range of balances
- We can have a secondary index with an index record for each search-key value

Secondary Indices Example



Secondary index on balance field of account

- Index record points to a bucket that contains pointers to all the actual records with that particular search-key value.
- Secondary indices have to be dense

Primary and Secondary Indices

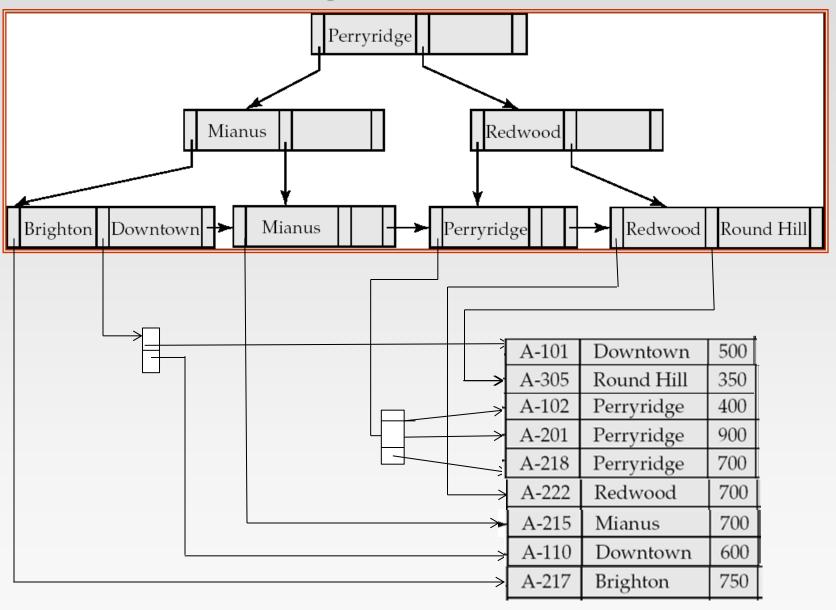
- Indices offer substantial benefits when searching for records.
- BUT: Updating indices imposes overhead on database modification -when a file is modified, every index on the file must be updated,
- Sequential scan using primary index is efficient, but a sequential scan using a secondary index is expensive
 - Each record access may fetch a new block from disk
 - Block fetch requires about 5 to 10 milliseconds
 - versus about 100 nanoseconds for memory access

B*-Tree Index Files

B+-tree indices are an alternative to indexed-sequential files.

- Disadvantage of indexed-sequential files
 - performance degrades as file grows, since many overflow blocks get created.
 - Periodic reorganization of entire file is required.
- Advantage of B+-tree index files:
 - automatically reorganizes itself with small, local, changes, in the face of insertions and deletions.
 - Reorganization of entire file is not required to maintain performance.
- (Minor) disadvantage of B+-trees:
 - extra insertion and deletion overhead, space overhead.
- Advantages of B+-trees outweigh disadvantages
 - B+-trees are used extensively

Example of a B⁺-tree



B+-tree for account (n=3)

account file

B⁺-Tree Node Structure

Typical node

- a node is the same size as a disk block
- K_i are the search-key values
- P_i are pointers to children (for non-leaf nodes) or pointers to records or buckets of records (for leaf nodes)
- n-1 maximum number of pairs (K, P) that fit in a node
- n maximum number of pointers that fit in a node
- The search-keys in a node are ordered

$$K_1 < K_2 < K_3 < \ldots < K_{n-1}$$

B*-Tree Index Files (Cont.)

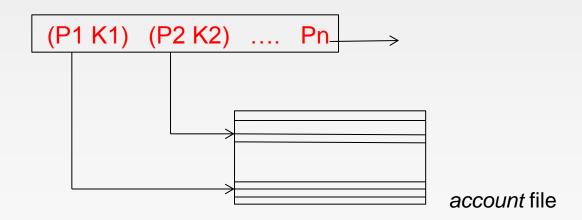
A B+-tree is a rooted tree satisfying the following properties:

- All paths from root to leaf are of the same length
- Each node that is not a root or a leaf has between $\lceil n/2 \rceil$ and n children.
- A leaf node has between $\lceil (n-1)/2 \rceil$ and n-1 values
- Special cases:
 - If the root is not a leaf, it has at least 2 children.
 - If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and (*n*–1) values.

Leaf Nodes in B*-Trees

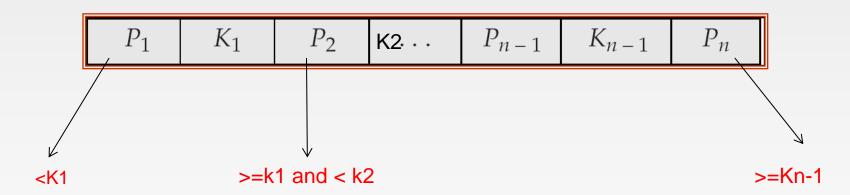
Properties of a leaf node:

- For i = 1, 2, ..., n-1, pointer P_i either points to a file record with search-key value K_i , or to a bucket of pointers to file records, each record having search-key value K_i . Only need bucket structure if search-key does not form a primary key.
- If L_i , L_j are leaf nodes and i < j, L_i 's search-key values are less than L_j 's search-key values
- \blacksquare P_n points to next leaf node in search-key order
- Leaves contain all the search key values

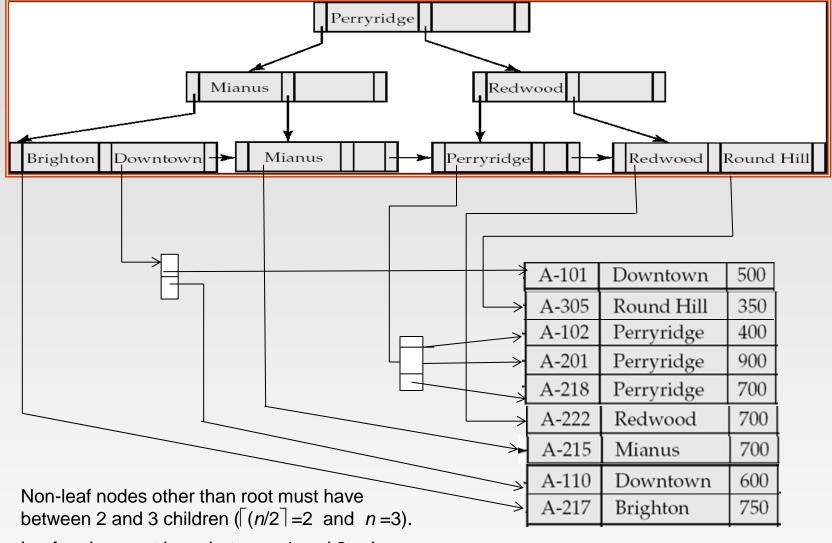


Non-Leaf Nodes in B⁺-Trees

- Non leaf nodes form a multi-level sparse index on the leaf nodes. For a non-leaf node with m pointers:
 - All the search-keys in the subtree to which P_1 points are less than K_1
 - For $2 \le i \le n-1$, all the search-keys in the subtree to which P_i points have values greater than or equal to K_{i-1} and less than K_i
 - All the search-keys in the subtree to which P_n points have values greater than or equal to K_{n-1}



Example of a B+-tree (n=3)



Leaf nodes must have between 1 and 2 values $(\lceil (n-1)/2 \rceil = 1 \text{ and } n-1=2).$

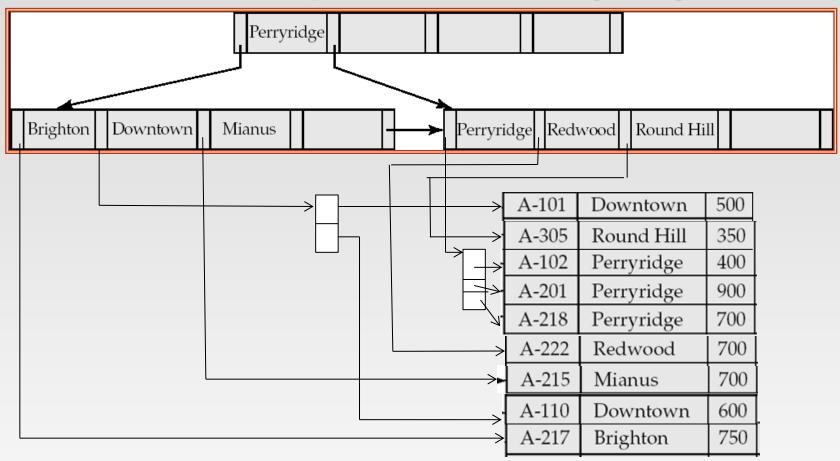
Root must have at least 2 children (not leaf)

Root must have between 0 and 2 values (leaf)

1.21

account file

Example of B⁺-tree (n=5)



- Non-leaf nodes other than root must have between 3 and 5 children ($\lceil (n/2) \rceil = 3$ and n = 5).
- Leaf nodes must have between 2 and 4 values $(\lceil (n-1)/2 \rceil = 2 \text{ and } n-1=4).$
- Root must have at least 2 children (not leaf)
- Root must have between 0 and 4 values (leaf)

account file

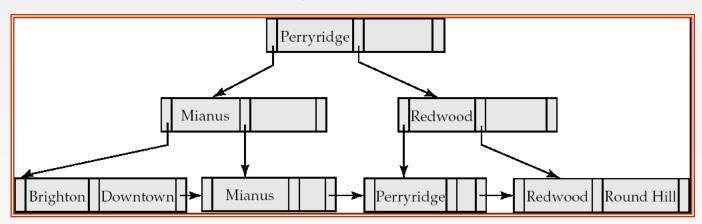
Observations about B⁺-trees

- The non-leaf levels of the B+-tree form a hierarchy of sparse indices.
- The B+-tree contains a relatively small number of levels
 - ▶ Level below root has at least 2* \[n/2 \] values
 - Next level has at least 2* \[n/2 \] * \[n/2 \] values
 - .. etc.
 - If there are K search-key values in the file, the tree height is no more than $\lceil \log_{\lceil n/2 \rceil}(K) \rceil$
 - thus searches can be conducted efficiently.
- Insertions and deletions to the main file can be handled efficiently, as the index can be restructured in logarithmic time (as we shall see).

Queries on B⁺-Trees

- Find all records with a search-key value of *k*.
 - 1. N=root

- 2. Repeat
 - 1. Examine N for the smallest search-key value > k.
 - 2. If such a value exists, assume it is K_{i} . Then set $N = P_{i}$
 - 3. Otherwise $k \ge K_{n-1}$. Set $N = P_n$ Until N is a leaf node
- 3. If for some *i*, key $K_i = k$ follow pointer P_i to the desired record or bucket.
- 4. Else no record with search-key value *k* exists.



Queries on B+Trees (Cont.)

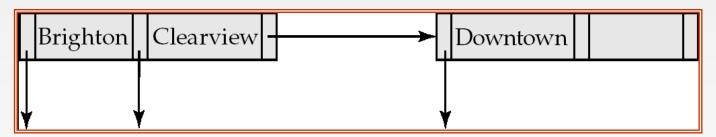
- If there are K search-key values in the file, the height of the tree is no more than $\lceil \log_{\lceil n/2 \rceil}(K) \rceil$.
- A node is generally the same size as a disk block, typically 4 kilobytes
 - and n is typically around 100 (40 bytes per index entry).
- With 1 million search key values and n = 100
 - at most $log_{50}(1,000,000) = 4$ nodes are accessed in a lookup.
- Contrast this with a balanced binary tree with 1 million search key values — around 20 nodes are accessed in a lookup
 - above difference is significant since every node access may need a disk I/O, costing around 20 milliseconds

Updates on B*-Trees: Insertion

- 1. Find the leaf node in which the search-key value would appear
- 2. If the search-key value is already present in the leaf node
 - 1. Add record to the file
 - 2. If necessary add a pointer to the bucket.
- 3. If the search-key value is not present, then
 - add the record to the main file (and create a bucket if necessary)
 - 2. If there is room in the leaf node, insert (key-value, pointer) pair in the leaf node
 - 3. Otherwise, split the node (along with the new (key-value, pointer) entry) as discussed in the next slide.

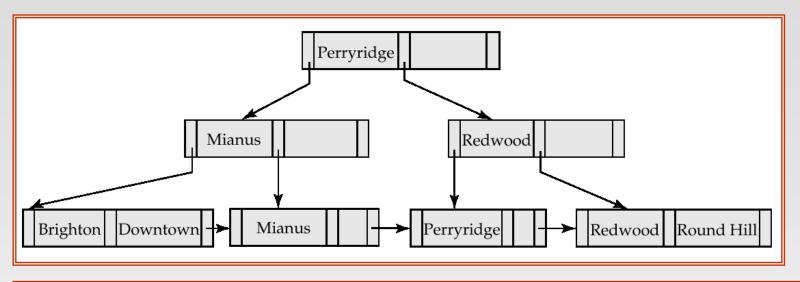
Updates on B⁺-Trees: Insertion (Cont.)

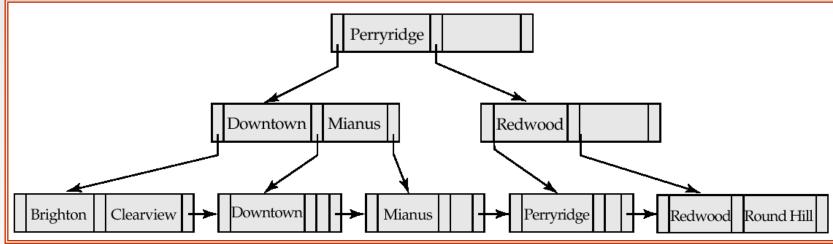
- Splitting a leaf node:
 - take the n (search-key value, pointer) pairs (including the one being inserted) in sorted order. Place the first $\lceil n/2 \rceil$ in the original node, and the rest in a new node.
 - let the new node be p, and let k be the least key value in p. Insert (k,p) in the parent of the node being split.
 - If the parent is full, split it and propagate the split further up.
- Splitting of nodes proceeds upwards till a node that is not full is found.
 - In the worst case the root node may be split increasing the height of the tree by 1.



Result of splitting node containing Brighton and Downtown on inserting Clearview Next step: insert entry with (Downtown,pointer-to-new-node) into parent

Updates on B⁺-Trees: Insertion (Cont.)

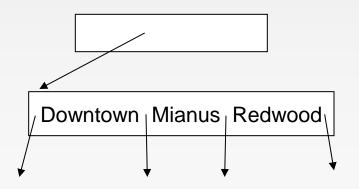


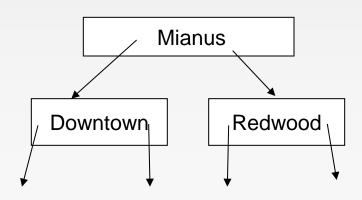


B+-Tree before and after insertion of "Clearview"

Insertion in B⁺-Trees (Cont.)

- Splitting a non-leaf node: when inserting (k,p) into an already full internal node N
 - Copy N to an in-memory area M with space for n+1 pointers and n keys
 - Insert (k,p) into M
 - Copy P₁,K₁, ..., K_{[n/2]-1},P_[n/2] from M back into node N
 - Copy $P_{\lceil n/2 \rceil + 1}$, $K_{\lceil n/2 \rceil + 1}$,..., K_n , P_{n+1} from M into newly allocated node N'
 - Insert (K_{□n/2}¬,N') into parent of N
- Pseudocode in book!





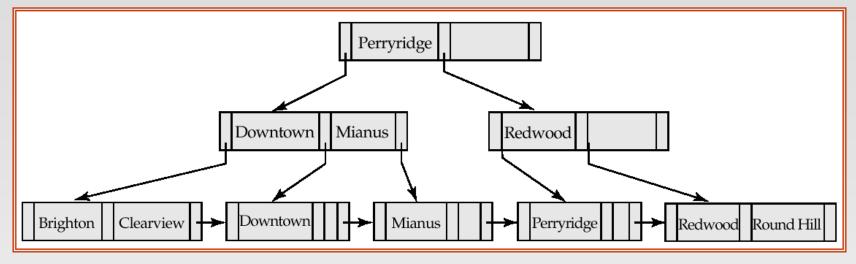
Updates on B*-Trees: Deletion

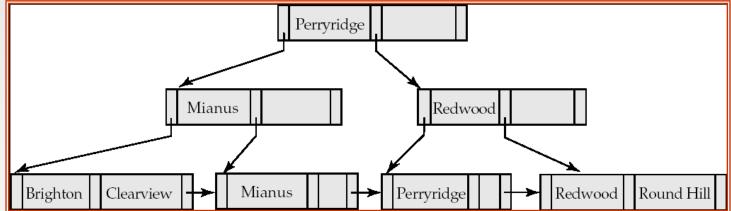
- Find the record to be deleted, and remove it from the main file and from the bucket (if present)
- Remove (search-key value, pointer) from the leaf node if there is no bucket or if the bucket has become empty
- If the node has too few entries due to the removal, and the entries in the node and a sibling fit into a single node, then merge siblings:
 - Insert all the search-key values in the two nodes into a single node (the one on the left), and delete the other node.
 - Delete the pair (K_{i-1}, P_i) , where P_i is the pointer to the deleted node, from its parent, recursively using the above procedure.
 - Merge of intermediate node: value separating the two nodes (at parent) moves into merged node

Updates on B⁺-Trees: Deletion

- Otherwise, if the node has too few entries due to the removal, but the entries in the node and a sibling do not fit into a single node, then redistribute pointers:
 - Redistribute the pointers between the node and a sibling such that both have more than the minimum number of entries.
 - Update the corresponding search-key value in the parent of the node.
- The node deletions may cascade upwards till a node which has $\lceil n/2 \rceil$ or more pointers is found.
- If the root node has only one pointer after deletion, it is deleted and the sole child becomes the root.

Examples of B*-Tree Deletion

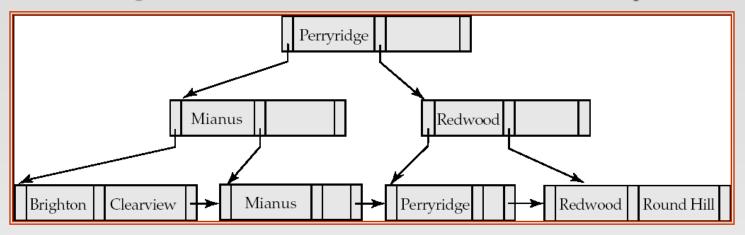


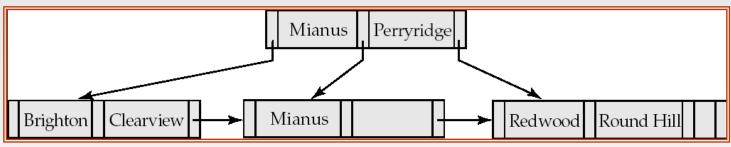


Before and after deleting "Downtown"

- Deleting "Downtown" causes merging of under-full leaves
 - leaf node can become empty only for n=3!

Examples of B⁺-Tree Deletion (Cont.)

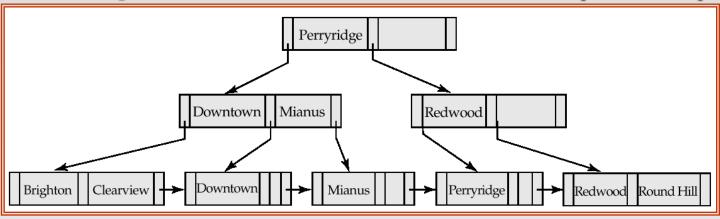


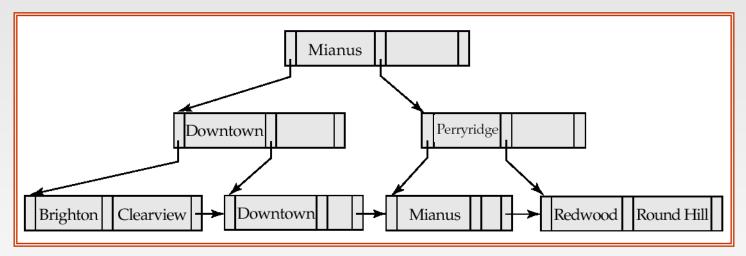


Deletion of "Perryridge" from result of previous example

- Leaf with "Perryridge" becomes underfull (actually empty, in this special case) and merged with its sibling.
- As a result "Perryridge" node's parent became underfull, and was merged with its sibling
 - Value separating two nodes (at parent) moves into merged node
 - Entry deleted from parent
- Root node then has only one child, and is deleted

Example of B⁺-tree Deletion (Cont.)





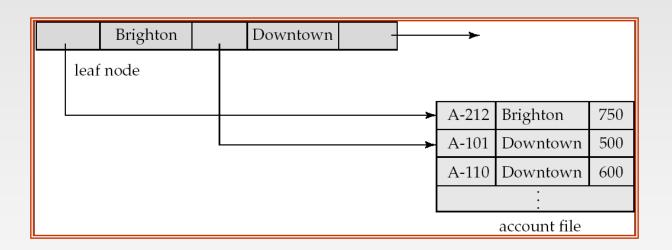
Before and after deletion of "Perryridge" from the first example

- Parent of leaf containing Perryridge became underfull, since merge is not possible, borrowed a pointer from its left sibling
- Search-key value in the parent's parent changes as a result

Example of B+-tree for a sequentially ordered file

Solution 1

Leaf node: (Pi, Ki), Pi is a pointer to the first record with search key value Ki in the file

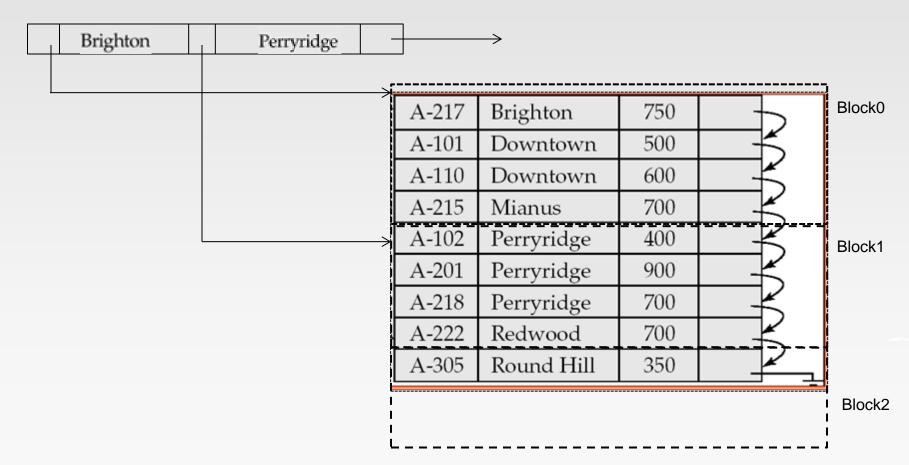


Example of B+-tree for a sequentially ordered file (cont.)

Solution 2

Leaf nodes: pointers to blocks

(Pi, Ki): Pi pointer to a block of the file, whose least search key value is Ki

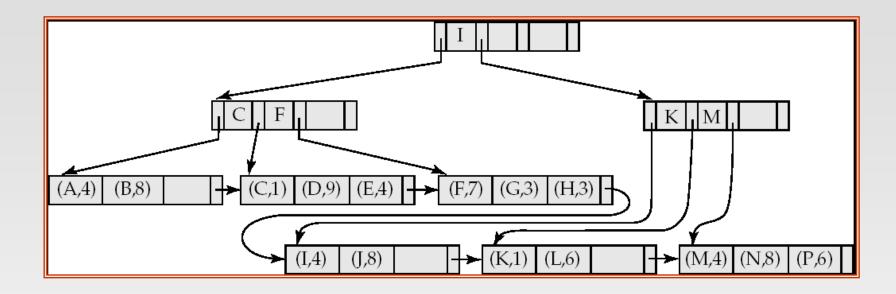


B⁺-Tree File Organization

B⁺-Tree File Organization

- Index file degradation problem is solved by using B+-Tree indices.
- Data file degradation problem is solved by using B+-Tree File Organization.
- The leaf nodes in a B+-tree file organization store records, instead of pointers.
- Leaf nodes are still required to be half full
 - Since records are larger than pointers, the maximum number of records that can be stored in a leaf node is less than the number of pointers in a nonleaf node.
- Insertion and deletion are handled in the same way as insertion and deletion of entries in a B+-tree index.

B⁺-Tree File Organization (Cont.)



Example of B+-tree File Organization

- Good space utilization important since records use more space than pointers.
- To improve space utilization, involve more sibling nodes in redistribution during splits and merges