
1

Fault tolerance

D. P. Siewiorek R.S. Swarz,

Reliable Computer Systems,

Prentice Hall, 1992

2

3

4

5

Redundancy in fault tolerant computing

6

➢ HARDWARE REDUNDANCY

Physical replication of hw

(the most common form of redundancy)

The cost of replicating hw within a system is decreasing because the

costs of hw is decreasing

➢ INFORMATION REDUNDANCY

Addition of redundant information to data in order to allow fault

detection and fault masking

➢ TIME REDUNDANCY

Attempt to reduce the amount of extra hw at the expense of using

additional time

➢ SOFTWARE REDUNDANCY

Fault detection and fault tolerance implemented in sw

Redundancy

Fault tolerance computing is based on redundancy

7

HARDWARE REDUNDANCY

8

Hardware redundancy

➢ Passive fault tolerant techniques

- use fault masking to hide the occurrence of faults

- rely upon voting mechanisms to mask the occurrence of faults

- do not require any action on the part of the system / operator

- generally do not provide for the detection of faults

➢ Active fault tolerance techniques (dynamic approach)

- fault detection, location and recovery

- detect the existence of faults and perform some actions to remove

the faulty hw from the system

- require the system to perform reconfiguration to tolerate faults

- common in applications where temporary, erroneous results are

acceptable while the system reconfigures (satellite systems)

➢ Hybrid approach

- very expensive

- often used in critical computations in which fault masking is required to

prevent momentary errors and high reliability must be achieved

9

Passive fault tolerance technique
Triple Modular Redundancy (TMR) – fault masking

Module 1

Module 3

Module 2 Voter
output

Triplicate the hw (processors, memories, ..) and perform a majority vote to determine the

output of the system

- 2/3 of the modules must deliver the correct results

- effects of faults neutralised without notification of their occurrence

- masking of a failure in any one of the three copies

Sometimes some failures in two or more modules may occurr in such a way that a failure

is avoided (compensating failures)

Example

- stuck-at-1 in a module line; stuck-at-0 in another copy at the same line,

correct voted result

- failure at location 127 in a memory; failure at location 10 in another copy,

correct voted result

10

The effect of partitioning of modules (A, B, C) is that the design can withstand

more failures than the solution with only one large triplicated module

The partition cannot be extended to arbitrarily small modules, because

reliability improvement is bounded by the reliability of the voter

Triplicated voters: voter errors propagates only of one step

Cascading TMR with triplicated voters

11

Voter:

Hardware voters are bit voters that compute the majority on n input bits.

Optimal designs of hardware voters with respect to circuit complexity, number of

logic levels, fan-in and fan-out, power dissipation, …, in order to obtain high

reliability

1 bit majority voter

OUT = AB + BC + AC

12

N-Modular Redundancy with Voting
- n is made an odd number

- 5MR tolerates 2 faulty modules

Coverage:

m faulty modules, with n = 2m +1

Good for transient faults

For permanent faults, since the faulty module is not isolated,

the protective fault tolerance decreases

13

Active hw redundancy

Module 1

Module 2

output
input

1. Duplication with comparison scheme (duplex systems)

- two identical pieces of hw (Module1 and Module 2) are employed

- they perform the same computation in parallel

- when a failure occurs, the two outputs are no more identical and a simple comparison

detects the fault

- Then the comparator (hw component) selects the output and reconfigure the switch

to select the correct value

The comparator must select the correct value: the comparator uses

range checks, assertions, parity checks, ….

executed at each clock period

comparator
switch

Sometimes named dual-modular redundancy

14

Problems:

- need to check if the output data are valid. The comparator may not be able to perform an

exact comparison, depending on the application area (digital control applications)

- faults in the comparator may cause an error indication when no error exists or possible faults

in duplicated modules are never detected

Advantages:

- Simplicity, low cost, low performance impact of the comparison technique, applicable

to all levels and areas

- Coverage:

→ detects all single faults except those of the comparison element

15

- hot spares

the spares operate in synchrony

with the on line modules, and

they are prepared to take over

- warm spares

the spares are running but

receive inputs only after switching

- cold spares

the spares are unpowered until

needed to replace a faulty

module

2. Stand-by sparing

input output

Module 1

Module 2

Module n

error detection

error detection

error detection

switch.
.
.

• Part of the modules are operational, part of the modules are spares modules (used as

replacement modules)

• The switch can decide no longer use the value of a module (fault detection and

localization). The faulty module is removed and replaced with one of the spares. The

switch can activate another module.

Reconfiguration process can be viewed as a switch that accepts the module’s outputs and error reports

As long as the outputs agree, the spares are not used. When a miscompare occurs, the switch uses

the error reports from the modules to identify the faulty module and then select a replacement module.

16

➢ A module is a duplex system, pairs

connected by a comparator

➢ Duplex systems are connected to

spares by a switch

➢ As long as the two outputs agree, or

the comparator can detect the right

value, the spare is not used.

Otherwise, the comparator signals

the switch that it is not able to

compute the right value and the

switch operates a replacemnet

using the spare.

➢ Used in commercial systems, safety

critical system (aviation, railways, …)

Different schemes can be implemented

input

output

Module 1

Module 2

switch

Pair-and-spare approach

Module 1

Module 2

comparator

comparator

spare

Pair results are used in a spare arrangment. Spare components at coarser granularity

Not all four copies must be synchronised (only the two pairs)

17

Hybrid approaches

Combine both the active and passive approaches

Very expensive in terms of the amount of hw required to implement a system

Applied in safety critical applications

NMR with spares (Reconfigurable NMR):

Modules arranged in a voting configuration

- spares to replace faulty units

- rely on detection of disagreements and determine the module(s)

not agreeing with the majority

18

NMR with spares

Fault detection

unit

SWITCH

(select N

out-of N+M)

output

Module 1

Module N

Spare

Module 1

Spare

Module M

Voter

. .

Active

units outputs

Disagreement

detection

. .

.

.

.

.

- N redundant module configuration

(active modules)

- Voter (votes on the output of active

modules)

- The Fault detection units

1) compares the output of the Voter

with the output of the active modules

2) replaces modules whose output

disagree with the output of the voter

with spares

- Reliability as long as the spare pool is

not empty

Coverage:

TMR with one spare can tolerate 2 faulty modules

(mask the first faulty module; replace the module; mask the second faulty module)

19

Key differences

Passive: rely on fault masking

Active: rely on error detection, location and recovery

Hybrid: emply both masking and recovery

Passive provides fault masking but requires investment in hw

(5MR can tolerate 2 faulty modules)

Active has the disadvantage of additional hw for error detection and

recovery, sometimes it can produce momentary erroneous outputs

Hybrid techniques have the highest reliability but are the most costly

(3MR with one spare can tolerate 2 faulty modules)

Hw redundancy techniques

20

INFORMATION REDUNDANCY

21

Coding
Information is represented with more bits that strictly necessary: says, an n-bit

information chunck is represented by

n+c= m bits

Among all the possible 2m configurations of the m bits, only 2n represent

acceptable values (code words)

if a non-code word appears, it indicates an error in

transmitting, or storing, or retrieving …

Set of

code words

Set of all

possible words

2n

2m

Parity code

for each unit of data, e.g. 8 bits, add a parity bit

so that the total number of 1’s in the resulting 9

bits is odd

10100000 1

byte parity

bit

10100100 1 not a codeword

communication

channel

sender

node

receiver

node

one bit flip

Two bit flips are not detected

22

Coding

Codes

- encoding :

the process of determining the c bit configuration for a n bit data item

- decoding:

the process of recovering the original n bit data from the m bit total bit

Separable code: a code in which the original information is appended with new

information to form the codeword. The decoding process consists of simply

removing the additional information and keeping the original data

Nonseparable code: requires more complicated decoding procedures

Parity code is a separable code

Additional information can be used for error detection and may be for error

correction

Memories of computer systems. Parity bit added before writing the memory. Parity bit is

checked when reading.

23

Hamming distance

number of bit positions on which two code words differ

A code such that the minimum Hamming distance is k will detect

up to k-1 single bit errors

Minimum Hamming distance:

minimum distance between two code words

3-bit words

boxed words = code words
4-bit words – 8 code words

A code such that the minimum Hamming distance is k will correct

up to d errors, where k = 2d +1

What is the minimum Hamming distance of odd parity? 2

We can detect a 1-bit error

We cannot locate/correct the error

We cannot detect a 2-bit error

24

2/4 m of n codes

all words with exactly two 1

Hamming distance: 2

4-bit words – 6 code words

Complemented duplication codes (CD)

Hamming distance: 2

4-bit words – 4 code words

Coverage:

Single bit error

Multiple adjacent unidirectional bit errors

33% double bit errors

Coverage:

Single bit error

Multiple adjacent unidirectional bit errors

66% double bit errors

25

Checksumming

dn

dn-1

d2

d1

rn

rn-1

r2

r1

Original data Received data

Checksum on

Original data
Checksum on

received data

Received version

of checksum

compare

- the checksum is

stored with the data block

- when blocks of data are

transferred (e.g. data transfer

between mass-storage device)

the sum is recalculated

and compared with the checksum

- checksum is basically the

sum of the original data

Coverage: single fault

checksum for a block of n words is formed by adding together all of the words in the block

modulo-k, where k is arbitrary (one of the least expensive method)

Code word = block + checksum

applied to large block of data in memories

26

Disadvantages

- if any word in the block is changed, the checksum must also be modified at the

same time

- allow error detection, no error location: the detected fault could be in the block

of s words, the stored checksum or the checking circuitry

- single point of failures for the comparison and encoder/detector element

Different methods differ for how summation is executed

Checksummming

27

Two-dimensional parity

1 0 1 …. 0 1

0 0 1 …. 1 1

1 1 1 …. 0 0

1 0 0 …. 0 0

k words

n-bit words

column parity

row parity
Odd parity

0

parity error

parity error

Error location is possible for single-bit error:

one error in the row parity vector, one error in the column parity vector

Single-error correcting code (SEC): detect and correct 1-bit error

ECC – Error Correcting Codes

28

Hamming Codes
Parity bits spread through all the data word

http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

Bit positions are numbered starting from 1: bit 1, 2, 3, 4, 5, etc.

Parity bits

all bit positions that are powers of two : 1, 2, 4, 8, etc.

Data bits

all other bit positions

Each data bit is included in a unique set of 2 or more parity bits, as determined by

the binary form of its bit position.

Parity bit pj covers all bits whose position has the j least significant bit set

29

Parity bit 1 covers all bit positions which have the first least significant bit set (- - - - - 1):

bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

Parity bit 2 covers all bit positions which have the second least significant bit set (- - - - 1 -):

bit 2 (the parity bit itself), 3, 6, 7, 10, 11, etc.

Parity bit 4 covers all bit positions which have the third least significant bit set (- - - 1 - -):

bits 4–7, 12–15, 20–23, etc.

Parity bit 8 covers all bit positions which have the fourth least significant bit set (- - 1 - - -):

bits 8–15, 24–31, 40–47, etc.

30

Overlap of control bit:

a data bit is controlled by more than one parity bits

Overhead /fault tolerance

Minimum Hamming distance: 3

Double-error detection code

Single-error correction code SEC-DED code

31

Self checking circuitry

Necessity of reliance on the correct operation of comparators and code

checkers that are used as hard-core for fault tolerant systems

Given a set of faults, design of comparators and code checkers capable

of detecting their own faults (checking the checker)

Self-checking circuit:

a circuit that has the ability to automatically detect the existence of the fault

and the detection occurs during the normal course of its operations

Typically obtained using coding techniques: circuit inputs and outputs are

encoded (also different codes can be used)

Basic idea:

fault free + code input → correct code output

fault + code input → (correct code output) or (non-code output)

32

Self checking circuitry
Let be given a set of faults.

Self-testing circuit: if, for every fault from the set, the circuit produces a non-code

output for at least one correct code input (each single fault is detectable)

Fault-secure circuit: if, for every fault from the set, the circuit never produces a not

correct code output for a code input (i.e. correct code output or non-code output)

Totally self-checking (TSC): if the circuit is self-testing and fault-secure

Example:

two signal input comparator

output 0 if inputs are equal; 1 otherwise

input and output coding: 1/2 code

(dual-rail signal: coded signal whose two bits are always complementary)

m/n code:

m bit equal to 1

33

D. P. Siewiorek R.S. Swarz,

Reliable Computer Systems,

Prentice Hall, 1992

Set of faults:

stuck-at-1, stuck-at-0

of each line

(a, b, c, d, e, ……, q, r)

Fault free

A =0, B =1

m=1, n =1, q=0

o = 0, p=1, r= 1

c2=0

c1=1

code

different input

A

B C

Two input comparator: output 0 if inputs are equal; 1 otherwise

Faulty:

A=0, B=1

m: stuck-at-0

c2 = 1

c1 = 1

noncode

Faulty:

A=0, B=1

m: stuck-at-1

c2=0

c1=1

code

different input

0

1

1

0

0

1

0 se A2 = B2 = 1 (A1=B1=0)

0 se A1= B1 = 1

1 se (00) o (11)

0 se A1 = B2 = 1 (10) 0 se A2= B1 = 1 (01)

1 se (10) o (01)

A B C

0 0 0

0 1 1

1 0 1

1 1 0

34

D. P. Siewiorek R.S. Swarz, Reliable

Computer Systems, Prentice Hall, 1992

n-input TSC comparator:

tree of two input

self checking comparators

35

TIME REDUNDANCY

36

Time redundancy techniques

Computation

Computation
Encode

Data
Decode

result

Store

result

Compare

results

Store

resulttime t0

time t0+d

Data

Data

error

Attempt to reduce the amount of extra hw at the expense of using additional time

1. Repetition of computations

- compare the results to detect faults

- re-execute computations (disagreement disappears or remains)

good for transient faults

no protection against permanent fault

problem of guaranteeing the same data when a computation is executed

(after a transient fault system data can be completely corrupted)

2. Use a minimum of extra hw to detect also permanent faults

- encode data before executing the second computation

37

Time redundancy techniques

Example

- errors in data transmitted over a parallel bus

- stuck at 0 of a line of the bus

t0: transmit original data

t0+d : transmit complement data

When the fault occurs: received data not complements of each other

t0 : 1 0 1 1 -> 1 0 0 1

t0+d : 0 1 0 0 -> 0 1 0 0

Transmission error free, each bit line should alternate between a logic 1 and a

logic 0 (alternating logic)

line stuck at 0

38

SOFTWARE REDUNDANCY

39

Software redundancy techniques

Due to the large cost of developing software, most of the software dependability

effort has focused on

fault prevention techniques and testing strategies

Fault tolerant software

Multi-version approaches

mainly used in safety-critical systems (due to cost)

Single-version approaches

one code with error detection and fault tolerant capabilities inside

40

Multi-version approaches

replicate the complete program

Software diversity

a simple duplication and comparison procedure will not detect software

faults if the duplicated software modules are identical

Independent generation of N >= 2 functionally equivalent programs,

called versions, from the same initial specification.

Two-version systems N = 2

Upon disagreement among the versions?

- retry or restart (fault containment)

- trasition to a predefined safe state

- reliance on one of the versions

N-version programming N-self-checking programming

41

N-version programming

Program

Inputs

Program

Inputs

Program

Version 1

Program

Version N

Program

Version 2 Voter

Program

Outputs

.

.

.

.

- independently developed versions

of design and code

Technique: independent

design teams using

different design

methodologies, algorithms,

compilers, run-time

systems and hardware

components

- vote on the N results produced

42

N-self-checking programming
- based on acceptance tests rather than comparison with equivalent versions

- N versions of the program are written

- each version is running simultaneously and includes its acceptance tests

- the selection logic chooses the results from one of the programs that passes

the acceptance tests

- tolerates N-1 faults (independent faults)

Program

Version 1

Program

Version N

Acceptance

tests

Accepptance

tests
Selection

Logic

.

.

Program

Inputs

Program

Outputs

Program

Inputs

43

Design diversity

- Cannot adopt the hardware analogy and assume versions fail independently

- Empirical evidence that there will be common faults

- There is evidence that diversity delivers some improvement over single

versions

related faults may result from dependencies in the separate designs and

implementations

(example: specification mistakes)

Functional diversity

assign to independent software versions diverse functions that compute the

same task

For example, in a plant, diverse measurement signals, actuators and functions

exists to monitoring the same phenomenon

Diverse functions: for example, functions that ensure independently that the

plant safety targets are met.

