Exercise

Let's consider the following relational schema for a group of insurance companies located in different cities:

CUSTOMER(<u>Id_cust</u>, Name, Age, City_cust) INSURANCE_COMPANY(<u>Id_company</u>, Id_Director, nEmployee, City) POLICY(<u>Id_policy</u>, Id_cust, Id_company, expiry_date)

Primary keys are underlined in the relations. Moreover, Id_cust in POLICY is foreign key of CUSTOMER; Id_company in POLICY is foreign key of INSURANCE_COMPANY and Id_Director in INSURANCE_COMPANY foreign key of CUSTOMER. A customer can have more than one policy in the same company or in different companies. Expiry_date in POLICY is a year.

Assume that: $n_{CUSTOMER} = 2000$ $n_{INSURANCE_COMPANY} = 20$ $n_{POLICY} = 100.000$

V(Id_cust, POLICY) = 2000 V(Id_company, POLICY) = 20 V(expiry_date, POLICY) = 20 V(City, INSURANCE_COMPANY) = 5

Given the query:

"Name of customers holding policies with companies located in Pisa and with expiry date 2010"

- 1) express the query as a relational-algebra expression;
- 2) show the basic steps of the query optimization process in terms of relational-algebra expression transformations
- 3) give an efficient strategy for computing the query.

Let C, IC and P denote CUSTOMER, INSURANCE_COMPANY and POLICY, respectively. Let |X| be the natural join

Point 1

 $\Pi_{\text{C.Name}} \left(\sigma_{\text{IC. City=Pisa and P.expiry_date= 2010}} \left(\left(C \mid X \mid P \right) \mid X \mid IC \right) \right)$

Point 2

 σ IC. City=Pisa and P.expiry_date=2010 (....) can be rewritten as: σ IC. City=Pisa (σ P.expiry_date=2010 (....))

 $\Pi_{C.Name} \left(\sigma_{IC. City=Pisa} \left(\sigma_{P.expiry_date= 2010} \left(\left(C ||X||P \right) ||X|||IC \right) \right) \right)$

Push selection down

 $\Pi_{\text{C.Name}} \left(\begin{array}{c|c} (C & |X| (\sigma_{\text{P.expiry}_date=2010} (P)) \end{array} \right) |X| (\sigma_{\text{IC. City=Pisa}} (IC)) \right)$

Push projection down

 $\Pi_{C.Name} \left(\left(\Pi_{C.Name, C.Id_cust} C \right) |X| \left(\Pi_{P.Id_cust, P.Id_company} \left(\sigma_{P.expiry_date=2010} P \right) \right)$

 $|X| (\Pi_{IC.Id_company} (\sigma_{IC. City=Pisa} (IC)))$

We evaluate the size and the number of different values for the new relations.

Let C' = $\Pi_{C.Name, C.Id_cust}$ (C) $n_{C'} = n_{CUSTOMER} = 2000$ Id_cust is a key Let P' = $\sigma_{P.expiry date= 2010}$ (P) $n_{P'} = n_{POLICY} / V(expiry_date, POLICY) = (100.000/20) = 5.000$ $V(Id_cust, P') = min(n_{P'}, V(Id_cust, P)) = min(5.000, 2.000) = 2.000$ $V(Id_company, P') = min(n_{P'}, V(Id_company, P)) = min(5.000, 20) = 20$

Let $P'' = \prod_{P.Id_cust, P.Id_company} (P')$ $n_{P''} = min(n_{P'}, V(Id_cust, P') * V(Id_company, P')) = min(5.000, 2.000 * 20) = 5.000$ $V(Id_cust, P'') = 2.000$ $V(Id_company, P'') = 20$

Let IC' = $\sigma_{IC. City=Pisa}$ (IC) $n_{IC'} = (n_{INSURANCE_COMPANY} / V(City, INSURANCE_COMPANY) = (20/5) = 4$ $V(Id_company, IC') = n_{IC'} = 4$

Let IC" = $\Pi_{IC.Id_company}$ (IC') $n_{IC"} = n_{IC'} = 4$ (Id_company is a key)

Point 3

Natural join is commutative. $\Pi_{\text{C.Name}}$ (C' /X/ P" /X/ IC")

We estimate the size of different combinations of join.

Let T1 = (C' |X| P'') Attribute of the join: Id cust Number of records in the result: Id_cust in P" is foreign key of C' (note that C' and C have the same values of Id_cust) $n_{T1} = n_{P''} = 5000$ Let T2 = (C' |X| |IC'') Cartesian product Number of records in the result: $n_{T2} = (n_{C'} * n_{IC''}) = 2000 * 4 = 8000$ Let T3 = (P'' | X | IC'') Attribute of the join: Id company Number of records in the result: Id_company in P" is not foreign key of IC" Id_company in P" is a key of IC" $n_{T3} < n_{P''} < 5.000$ More precisely (rule applied by the optimizer): min($n_{P''}$ * ($n_{IC''}$ / V(Id_company, IC''), $n_{IC''}$ * ($n_{P''}$ / V(Id_company, P'')) = $\min(5000 * (4/4), 4*(5.000/20)) = \min(5.000, 1.000) = 1.000$ The best ordering of join is : (C' X/(P'' X/ IC''))

An efficient strategy for solving the query is: $\Pi_{C.Name}$ (C' /X/ (P" /X/ IC"))