
Malware Analysis III 

Francesco Mercaldo

University of Molise, IIT-CNR

francesco.mercaldo@unimol.it

Formal Methods for Secure Systems, University of Pisa - 07/05/2021 



Target of mobile attack



The reason why



Malicious Behaviors

• Steal privacy sensitive data
• Contacts

• Text messages

• Steal user’s money
• Send text message

• Register to premium services

• Try to intercept bank transactions

• Show undesired advertisements (spam)

• Take control of the mobile device



Native Android Security Mechanisms

• Sandboxing (Isolation)
• Virtual Machine

• Linux Kernel

• Access Control
• Permission System

• Storage separation
• Possible for internal memory (ext3)

• Not possible for SDCard (fat32)



Sandboxing

• Dalvik Virtual Machine (or ART environment) act as a sandbox for 
Android applications.

• Each application can perform all of its operations inside the virtual
machine.

• Each application operates behaves like if there are no other
applications running on the device.

• Application cannot communicate directly.



Isolation

• Every Android application has a different Linux User ID. 

• Different storage space: an application cannot modify files of other
applications.

• Application execution is interference-free.

• This should avoid the privilege escalation attacks.

• Android applications are normal Linux user without root privilege: an 
application cannot modify system files.





Access Control

• An Android application that will access a critical resource, or will
perform a protected operation, have to ask the permission to do so.

• Permissions can be seen like a declaration of intent. 

• The application developer declares that the application want to 
perform a critical operation.



Permissions in Manifest

• Permissions are declared by developer in the manifest file, using a 
specific XML tag:

<uses-permission android:name="string" />

• Android defines 150+ permissions, identified by the name: 
android.permission.Permission



Permission Checker

• The permission checker is the component that verifies at runtime, if
an application that is going to perform a critical operation, has
declared the related permissions.

• If the permission has been declared the operation is allowed, 
otherwise the operation is denied.



Permission Verification

Call to critical API 
Function

Permission Checker
Invoked

Permission
in Manifest

Deny Operation

Allow Operation



Static Permission VS Dynamic Verification

• Permissions are declared statically in manifest files. Verification is
performed dynamically. 

• It is possible that a developer call in the Java code a critical function
without asking for the permission in the manifest file.
• Programming error. No warning are raised! When including a potentially

critical function control the API documentation to see the required
permissions.



Kind of attacks

• To infect mobile users, malicious apps typically lure 
users into downloading and installing them.

• Repackaging: downloading popular benign apps, repackaging them with additional 
malicious payloads, and then uploading repackaged ones to various Android 
marketplaces. 

• Update attack : the malicious payloads are disguised as the “updated” version of 
legitimate apps. 

• Drive-by download: redirect users to download malware, e.g., by using aggressive 
in-app advertisement or malicious QR code.



Google Bouncer

• Virtual Environment to check if app is malicious

• Runs the app in a phone like environment for around 5 mins before
publishing

• Detects most of the known malware…

• Can be bypassed easily



Android application

• APKs file



APP representations

APK DEX SMALI BYTECODE JAVA

Difficult to understand but we are able to rebuild the app

Easy to understand but we are not able to rebuild the app



ApkTool

• It can decode resources to nearly original form and rebuild them 
after making some modifications
• In most cases…



Bytecode Viewer
• Java source code/ Java Bytecode visualizer


