Malware Analysis Il

Francesco Mercaldo
University of Molise, [IT-CNR
francesco.mercaldo@unimol.it

>\ UNIVERSITA
SSwA wr - DEGLISTUDI Istituto di r
HH DEL MovisE Tolomatica del CNR
UNIVERSITA DI P1SA Consigho Nazionale
Formal Methods for Secure Systems, University of Pisa - 07/05/2021 delle Ricerche

T Istituto di Infarn

Target of mobile attack

s L oo06% MALWARE VARIANTS FLOW
BlackBerry | 0.00001%
PalmOS | 0.00001% . Mew families B Hew variants of existing families.

in 0,
Symbian | 3.45% WinCE | 0.00001%

_____ Linear {Mew families)

2

]
ol

—i r
0l
2 S M- u |
T . A = @w
_______ -- I g
21 a2 Q3

2
220

Android | 96.54%

The reason why

The Smartphone Platform War Is Over

Worldwide smartphone operating system market share (based on unit sales)
B Android [i0os [Windows [BlackBerry [l Symbian [Others

100%

, 4
o .
60% I }
40% [
L 1
206 1R .
0 .—
2009 2010 2011 2012 2013 2014 2015 2016
statista %

@statistaCharts Source: Gartner

Malicious Behaviors

* Steal privacy sensitive data
* Contacts
* Text messages

 Steal user’s money

* Send text message
* Register to premium services
* Try to intercept bank transactions

* Show undesired advertisements (spam)

* Take control of the mobile device

Native Android Security Mechanisms

» Sandboxing (Isolation)
* Virtual Machine
e Linux Kernel

* Access Control
* Permission System

* Storage separation

* Possible for internal memory (ext3)
* Not possible for SDCard (fat32)

Sandboxing

 Dalvik Virtual Machine (or ART environment) act as a sandbox for
Android applications.

* Each application can perform all of its operations inside the virtual
machine.

* Each application operates behaves like if there are no other
applications running on the device.

* Application cannot communicate directly.

Isolation

* Every Android application has a different Linux User ID.

* Different storage space: an application cannot modify files of other
applications.

* Application execution is interference-free.
* This should avoid the privilege escalation attacks.

* Android applications are normal Linux user without root privilege: an
application cannot modify system files.

/7

Istituto df Ink

The Android Platform

\
Android Android Android
Application Application Application
A B C

/anmn Using /\Al:nm Using /meon Using
Android Android Android
Java Framework Java Framework Java Framework
\. J \. J \. J
DALVIK Virtual Machine DALVIK Virtual Machine DALVIK Virtual Machine
Linux User Linux User
A C

B_z/

Linux 2.6 Operating System
(Hardware Abstraction Layer)

Security

o)

Display
Keypad
Touchscreen

Other Drivers
WiFi, Bluetooth, Camera, Audio,
Telephony, Flash, Device Sensars

Access Control

* An Android application that will access a critical resource, or will
perform a protected operation, have to ask the permission to do so.

* Permissions can be seen like a declaration of intent.

* The application developer declares that the application want to
perform a critical operation.

Permissions in Manifest

* Permissions are declared by developer in the manifest file, using a
specific XML tag:

<uses-permission android:name="string" />

* Android defines 150+ permissions, identified by the name:
android.permission.Permission

Permission Checker

* The permission checker is the component that verifies at runtime, if
an application that is going to perform a critical operation, has
declared the related permissions.

* If the permission has been declared the operation is allowed,
otherwise the operation is denied.

Permission Verification

Call to critical API
Function

Permission Checker |
Invoked

Permission

in Manifest Deny Operation

Allow Operation

Static Permission VS Dynamic Verification

* Permissions are declared statically in manifest files. Verification is
performed dynamically.

e |t is possible that a developer call in the Java code a critical function
without asking for the permission in the manifest file.
* Programming error. No warning are raised! When including a potentially

critical function control the APl documentation to see the required
permissions.

Kind of attacks

* To infect mobile users, malicious apps typically lure
users into downloading and installing them.

* Repackaging: downloading popular benign apps, repackaging them with additional
malicious payloads, and then uploading repackaged ones to various Android
marketplaces.

* Update attack : the malicious payloads are disguised as the “updated” version of
legitimate apps.

* Drive-by download: redirect users to download malware, e.g., by using aggressive
in-app advertisement or malicious QR code.

Google Bouncer

* Virtual Environment to check if app is malicious

* Runs the app in a phone like environment for around 5 mins before
publishing

e Detects most of the known malware...

* Can be bypassed easily

Android application

e APKs file

META-INF _artella di fil

“
gy res Lartella di ful
‘.{ AndroidManifest.xml File XML
i | classes.dex File DEX

y | resources.arsc File ARSC

APP representations

Difficult to understand but we are able to rebuild the app

vl [srrecooe Y sava

Easy to understand but we are not able to rebuild the app

lib

res

ApkTool sai

= AndroidManifest.xml

| | apktoocl.yml

* |t can decode resources to nearly original form and rebuild them
after making some modifications

* |n most cases...

“Uzsers-Seven~Desktop~ToolChain-apktool>apktool d Uibhe»_2_1_6.632_apk
Baksmaling. . .

Loading »esource table. ..

Loaded.

Decoding AndryroidManifest.xml with »esources.. .

Loading »esource tabhle from file:- C-xUsers-Seven~apktool~framewvork-l._apk
Loaded .

RHegula» manifest package ...

Decoding file—resources..

Decoding values == HML=...

Done .

Copuying assets and libs ..

i
I
| |
I
I
I
I
I
I
I
I
I

Bytecode Viewer

* Java source code/ Java Bytecode visualizer

java -jar Bytecode-Viewer-2.9.16.jar

0 Bytecode Viewer 2.9.16 - https://bytecodeviewer.com | https://the.bytecode.club - @Konloch - x
File View Settings Plugins
>
Files Work Space
-8 Igation o android/support/v4/graphics/drawable/DrawableCompat$DrawableImpl.class % comjbaidu/location/aa.class
+ a
#-H b * * [Exact * L3 [Exact
: a‘dassl Procyon Decompiler - Editable: false Bytecode Decompiler - Editable: false
= :::;:EI:; package com.baidu.location; » 1 class com/baidu/location/aa implements com/baidu/location/au, andro ™
= aa$3.class 2 2 ClassVersion=50>
= aa$a.class import android.os.*; 3
- b.cl 4 dimport java.io.*; 4 private static com.baidu.location.aa jZ2;
- .class: 5 dmport android.hardware.*; 5 private boolean j0;
= ab.(lass. 3 2 private android.os.Handler jl:
= ac.class 7 class aa implements au, SensorEventlistener, b 7 private boolean j3;
= ad$l.class 8B { private int j4;
= adfa.class 9 private static aa jZ; g private java.lang.StringBuffer 35;
= ad.class v 10 private boolean j0; 10 private android.hardware.SensorManager j&;
< ' > 11 private Handler jl: 11 private java.lang.StringBuffer j7;
Quick file search (no file extension 1z private boolean j3: 1z private java.lang.Punnable j8;
|jExact _ > I" pr:livate int j4-: ‘ pr%vﬂtc Finﬂ.‘l int _j5: o
14 private StringBuffer j5; 14 private java.lang.Punnable jS;
—— 15 private SensorManager j6; 15 private android.hardware.Sensor jT;
16 private St Buffer j7; 16 private fimal int jU;
Search from All_Classes ~ 17 private Fu sl:H 17 private boolean jV;
Strings ~ 18 private fimal int j9; 18 private boolean jW:
. 19 private Punnable j5; g private int jX;
Search String:
20 private Sensor iT; 20 private boolean jY;
DExact 21 private final int jU; 21 private android.hardware.Sensor jZ;
R 22 private boolean jV; 22
23 private boolean jV; 238 private aa() { // <init> //()V
Results 24 private int jX: 24 TryCatch: L1 to L2 handled by L3: java/lang/Exception
25 private boolean jY; 25 aload0 // reference to self
26 private Sensor jZ; 2 invokespecial java/lang/0Obj=ct.<init>()V
27 27 aload0 // refer to self
288 private aa() | 28 iconst_1
29 this.js = 1; 29 putfield com/baidu/location/aa.j9:int
30 this.ju = 2 v 30 aload0 to self v
> i 4O o Ealan. 51 PP,
< > < >
Refresh

T Istituto di Informatica & Telematica

