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Target of mobile attack
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The reason why

The Smartphone Platform War Is Over

Worldwide smartphone operating system market share (based on unit sales)
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Malicious Behaviors

* Steal privacy sensitive data
* Contacts
* Text messages

 Steal user’s money

* Send text message
* Register to premium services
* Try to intercept bank transactions

* Show undesired advertisements (spam)

* Take control of the mobile device




Native Android Security Mechanisms

» Sandboxing (Isolation)
* Virtual Machine
e Linux Kernel

* Access Control
* Permission System

* Storage separation

* Possible for internal memory (ext3)
* Not possible for SDCard (fat32)




Sandboxing

 Dalvik Virtual Machine (or ART environment) act as a sandbox for
Android applications.

* Each application can perform all of its operations inside the virtual
machine.

* Each application operates behaves like if there are no other
applications running on the device.

* Application cannot communicate directly.




Isolation

* Every Android application has a different Linux User ID.

* Different storage space: an application cannot modify files of other
applications.

* Application execution is interference-free.
* This should avoid the privilege escalation attacks.

* Android applications are normal Linux user without root privilege: an
application cannot modify system files.
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Access Control

* An Android application that will access a critical resource, or will
perform a protected operation, have to ask the permission to do so.

* Permissions can be seen like a declaration of intent.

* The application developer declares that the application want to
perform a critical operation.




Permissions in Manifest

* Permissions are declared by developer in the manifest file, using a
specific XML tag:

<uses-permission android:name="string" />

* Android defines 150+ permissions, identified by the name:
android.permission.Permission




Permission Checker

* The permission checker is the component that verifies at runtime, if
an application that is going to perform a critical operation, has
declared the related permissions.

* If the permission has been declared the operation is allowed,
otherwise the operation is denied.




Permission Verification

Call to critical API
Function

Permission Checker |
Invoked

Permission

in Manifest Deny Operation

Allow Operation




Static Permission VS Dynamic Verification

* Permissions are declared statically in manifest files. Verification is
performed dynamically.

e |t is possible that a developer call in the Java code a critical function
without asking for the permission in the manifest file.
* Programming error. No warning are raised! When including a potentially

critical function control the APl documentation to see the required
permissions.




Kind of attacks

* To infect mobile users, malicious apps typically lure
users into downloading and installing them.

* Repackaging: downloading popular benign apps, repackaging them with additional
malicious payloads, and then uploading repackaged ones to various Android
marketplaces.

* Update attack : the malicious payloads are disguised as the “updated” version of
legitimate apps.

* Drive-by download: redirect users to download malware, e.g., by using aggressive
in-app advertisement or malicious QR code.




Google Bouncer

* Virtual Environment to check if app is malicious

* Runs the app in a phone like environment for around 5 mins before
publishing

e Detects most of the known malware...

* Can be bypassed easily




Android application

e APKs file
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APP representations

Difficult to understand but we are able to rebuild the app
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Easy to understand but we are not able to rebuild the app
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res

ApkTool sai

= AndroidManifest.xml

| | apktoocl.yml

* |t can decode resources to nearly original form and rebuild them
after making some modifications

* |n most cases...

“Uzsers-Seven~Desktop~ToolChain-apktool>apktool d Uibhe»_2_1_6.632_apk
Baksmaling. . .

Loading »esource table. ..

Loaded.

Decoding AndryroidManifest.xml with »esources.. .

Loading »esource tabhle from file:- C-xUsers-Seven~apktool~framewvork-l._apk
Loaded .

RHegula» manifest package ...

Decoding file—resources..

Decoding values == HML=...

Done .

Copuying assets and libs ..
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Bytecode Viewer

* Java source code/ Java Bytecode visualizer

java -jar Bytecode-Viewer-2.9.16.jar

0 Bytecode Viewer 2.9.16 - https://bytecodeviewer.com | https://the.bytecode.club - @Konloch - x
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