
Security

Outline

• Security threats and vulnerability

• STRIDE Threat Modeling tool

• PLOVER : Preliminary List Of Vulnerability Examples for Researchers

• Quantitative evaluation of security
• Attack trees

• ADversary VIew Security Evaluation (ADVISE)

Quantitative evaluation of dependability 2FMSS, 2020-2021

3Quantitative evaluation of dependabilityFMSS, 2020-2021

Security

The system generally implements an authorization policy

• Data confidentiality
protected data not read by unauthorized users

• Data integrity
protected data not modified by unauthorized users

A violation in data confidentiality or data integrity does not imply a failure in reliability
or availability. Both attributes are not related to the functionality of the system

Likewise,
• Non-repudiability

“Prevents future false denial of involvement by either party in a transaction”
“availability and integrity of the identity of the sender of the message or the receiver”

• Authenticity
“The claimed identity of a party to a transaction can be independently verified”
“ integrity of a message content, origin, time of emission, …”

Quantitative evaluation of dependability 4FMSS, 2020-2021

Security policy

Security policy:

a set of security-motivated constraints that must be satisfied by an organization or a computer system.

e.g. policy regarding the public disclosure of company information, policy of the physical and networked

access to company computers, constraints on how information may flow within a system

Methods for

- formally expressing and analysing security policies

- the enforcement of the policy

Security failures:

- Security failure of the system, or

- the security policy not adequately describes the security requirements

(similar problem in system development life-cycle: requirements and specification)

example: firewall/access control

Quantitative evaluation of dependability 5FMSS, 2020-2021

Security

Quantitative evaluation of dependability 6FMSS, 2020-2021

Dependability in the face of system’s vulnerability and attacks

Fault taxonomy: attacks identified as malicious faults
Malicious faults can be executed with success only if there is a vulnerability in the system

Attackers learn over time
Attackers build a strategy over time

Security

Coupling of vulnerability and security exploitation makes security failures different from
traditional failures

• Vulnerability:

a computer system vulnerability is a flaw or weakness in a system or network that could be
exploited to cause damage, or allow an attacker to manipulate the system in some way

Causes of vulnerabilities may be system components or basic flaws in an individual
program or interactions of software programs, ….

• Exploit

Exploiting is the means through which a vulnerability can be leveraged for malicious
activity (piece of software; sequence of commands, open source exploit kits, ….)

Quantitative evaluation of dependability 7FMSS, 2020-2021

Security

One of the most important steps in preventing a security breach is
identifying security vulnerabilities before an attacker can leverage them

Define what needs to be protected. Set the goal for the overall system security.
Have an accurate list of the assets of the system: the network, the operating
systems, the software, the environment ….

Having this list helps for example to identify
(i) security vulnerabilities from obsolete software and
(ii) known program bugs in specific operating systems and software.

Continuous monitoring of new and emerging threats and attack strategies.

Quantitative evaluation of dependability 8FMSS, 2020-2021

Examples of source of vulnerability

Broken authentication

Authenticated credential or session identifier are compromised

Stolen credential or session id can be used by malicious agents to pose as original user.

Example:

a user executes login during a not authenticated session and then did not logout.
An attacker can get individual session ID that, for example, appear in an URL website and use the
user account access

Admin Account Privileges

There are no strict control on user account access privileges.

Avoid that un-privileged user have admin-level accounts.
These users could create more privileged account

Quantitative evaluation of dependability 9FMSS, 2020-2021

Examples of source of vulnerability

Countermeasure:

- limit the “access privileges” of software users. The less information/resources a
user can access, the less damage that user account can do if compromised.
Verifying that user account access is restricted to only what each user needs to do
their job. Policy of Least Privilege.

- to make harder to attackers to hijack user accounts, instead of using username
and password, apply multiple authentication methods (such as biometrics, one-
use texted codes, and physical tokens) for giving users access to the system.
Multifactor Authentication (MFA).

Quantitative evaluation of dependability 10FMSS, 2020-2021

Examples of source of vulnerability

Hidden backdoor programs

A backdoor is a program (code) that allows a computer to be remotely accessed.

Such code is often installed for diagnostic, configuration, or technical support purposes by
manufactures or developers. Hidden backdoor: in case the backdoor is installed without the user’s
knowledge. This is a software vulnerability because someone with knowledge of the backdoor can
access the computer system and the networks connected to the computer.

Example: software vulnerability in the Huawei routers

From the web: https://www.bloomberg.com/news/articles/2019-04-30/vodafone-found-hidden-backdoors-
in-huawei-equipment

“Europe’s biggest phone company identified hidden backdoors in the software that could have given
Huawei unauthorized access to the carrier’s fixed-line network in Italy, a system that provides
internet service to millions of homes and businesses… ”

Quantitative evaluation of dependability 11FMSS, 2020-2021

https://www.bloomberg.com/news/articles/2019-04-30/vodafone-found-hidden-backdoors-in-huawei-equipment

Examples of source of vulnerability

Software faults, e.g., buffer overflow.

Buffer overflow occurs when the input cannot be stored in the buffer and the memory area
outside the buffer is overwritten. An attacker can overwrite areas that hold executable code,
replacing it with their own code. A pointer can be overwritten for pointing to an exploit that
when executed takes the control of the program.
(C, C++ are vulnerable programming languages)

Security bugs in interactive software

Issues in a single software can create security vulnerability. In case of more than one
software that interface with other software the complexity increases and there may be more
causes (such as unanticipated code interactions) to create vulnerability.

Quantitative evaluation of dependability 12FMSS, 2020-2021

Examples of source of vulnerability

Misconfiguration (at any level of the application stack: network service, web server,

databases, virtual machine, …).

Assume the application server’s configuration allows detailed error messages, e.g. stack traces, to

be returned to users. These messages can expose sensitive information or underlying flaws. For

example, component versions that are known to be vulnerable.

Quantitative evaluation of dependability 13FMSS, 2020-2021

Security Threats

Smart devices

Unknown devices represent possible vulnerabilities.

Network today is really complex and encompasses many “smart” devices, based on wireless
communications. The issue with these devices is that they can be hijacked by attackers to form
slaved networks of compromised devices to carry out further attacks.

Countermeasure

- have a clear figure of the architecture of the network and the total number of devices

- adds extra layers of protection between each of the individual assets on the network. If attackers
bypass the outermost defenses of the network, there will still be other layers of protection between
the compromised asset and the rest of the network. Defense-in-depth approach to network security.

Quantitative evaluation of dependability 14FMSS, 2020-2021

Examples of source of vulnerability

Phishing Attacks

force employees to bypass security layers of the organization (Social Engineering).
The attacker attempts to trick the victim into disclosing sensitive data, disclosing account
credentials, downloading malware.
Example: Link in an email (that mimics someone who has authority in the company) that will
download malware in the computer, or request login and passwd.

Human factors

Many data breaches in an organization can be traced back to its employees. Employees may
download the wrong file from an online site, or give the wrong person their user account credentials.
Also employees may abuse their access privileges for personal gain.

Countermeasure

Provide basic knowledge needed to identify and avoid phishing attacks and accidental leakages ….
Cybersecurity awareness training

Quantitative evaluation of dependability 15FMSS, 2020-2021

Security Threats

Malwares

Programs whose scope is to access sensitive data and copy it.

Some malwares can autonomously copy data and send it to a specific port or server that an attacker

can then use to discreetly steal information.

Some malwares enter the system by using old security vulnerability not patched or they are

downloaded by the web clicking on files, etc.

SQL injection

Gain access to the database via malicious code injection.

Untrusted data sent to the interpreter as part of a command or query. The interpreter executes

unintended commands

e.g.: SELECT * FROM users WHERE username = 'administrator'--' AND password = ‘’

Quantitative evaluation of dependability 16FMSS, 2020-2021

Security defences

Feature of running safe scripts
Users often wouldn’t know to disable this “feature.” For example, Safari uses the option to
automatically run “trusted” or “safe” scripts.

Countermeasure

- Email Virus Detection Tools.

- Avoid to run scripts without malware/virus checks.

- Static analysis of the code.

Quantitative evaluation of dependability 17FMSS, 2020-2021

Examples of security defences

Intrusion detection systems

An intrusion detection software monitors a network or a system for malicious activity or policy
violations.

Intrusions or violations are reported. We distinguish between network intrusion detection systems
and host-based intrusion detection systems. The hacker do not realised to be observed.
Honepots can be used: a folder, for example, that contains information or resources of value to
attackers. The software is capable of blocking or analyzing the attackers.

Penetration Testing (ethical hacking)
A penetration test (pen test) is an authorized simulated cyber attack on a computer system,
performed to evaluate the security of the system.

The process typically identifies the target systems and a particular goal, then reviews available
information and undertakes various means to attain that goal.

Quantitative evaluation of dependability 18FMSS, 2020-2021

Microsoft Security Development Lifecycle (SDL)
Threat Modeling tool

Quantitative evaluation of dependability 19

The STRIDE threat model provides a way to methodically review system designs and highlight
security threats (https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling)

STRIDE uses six security threat categories to review system design (developed at Microsoft):

Shostack (2014). Threat Modeling: Designing for Security. Wiley.

FMSS, 2020-2021

an adversary exploiting confusion about who is talking

an adversary modifying data

an adversary denying that something happened

disclosure of information to someone not authorized to see it

deny or degrade service to users

gain capabilities without proper authorization

Microsoft Security Development Lifecycle (SDL)
Threat Modeling tool

Quantitative evaluation of dependability 20

SDL report

Taken from https://docs.microsoft.com/it-it/azure/security/develop/threat-modeling-tool-getting-started

FMSS, 2020-2021

“what
can go
wrong in
this
system
we're
working
on?”

ThreatModelingTool2016

Vulnerability classification

Example

PLOVER : Preliminary List Of Vulnerability Examples for Researchers

https://cwe.mitre.org/documents/sources/PLOVER.pdf

identifies 28 specific Weaknesses, Idiosyncrasies, Faults and Flaws (WIFFs)

Working document which lists over 1400 real examples of vulnerability (2006)

Quantitative evaluation of dependability 21

Many works classify vulnerabilities ad threats that may appear in general in a
computer system

FMSS, 2020-2021

PLOVER : Preliminary List Of Vulnerability Examples for Researchers

FMSS, 2020-2021 Quantitative evaluation of dependability 22

Taken from https://cwe.mitre.org/documents/sources/PLOVER.pdf

PLOVER : Preliminary List Of Vulnerability Examples for Researchers

FMSS, 2020-2021 Quantitative evaluation of dependability 23

Quantitative evaluation of Security

Combinatorial models

All basic events must be statistically independent

Do not model state - they model operational dependency of the
system on the components

Reliability block diagrams: not used in security

Attack trees (similar to Fault Trees)

- Consider a security breach as a system failure

- An attack tree models all possible attacks against the system

Quantitative evaluation of dependability 24FMSS, 2020-2021

Attack Trees

The tree describes sets of events that can lead to the goal in a
combinatorial way

Security of the system:

set of attack trees, where the root of each tree is the goal of an
attacker that can damage the system operation

1. Root = goal of an attacker

2. Leaf nodes = different basic ways to achieve that goal
(atomic attacks)

3. OR nodes = a node of which only one of its child nodes
needs to be successful

4. AND nodes = a node of which all of its child nodes need to
be successful

Quantitative evaluation of dependability 25

Attack tree published in [Buldas 20]

Ahto Buldas et al. Attribute
evaluation on attack trees with
incomplete information,
Computers & Security 88 (2020)

FMSS, 2020-2021

Attack Trees

Evaluation of different aspects of the system security,
depending on the kind of values assigned to the leaf nodes

Since an atomic attack can have multiple values, the attack
tree can be used to combine these values and help users to
learn more about a system’s vulnerability

Example

Possible/impossible, cost -> lowest possible cost attack

Example

probability, special equipment value -> most probable attack
with no special equipment required

Quantitative evaluation of dependability 26

[50$, Eq=Si, …p=0.8] [10$, Eq=No, …, p=0.2]

assign values to leaf nodes
and propagate the node
value up to the root

FMSS, 2020-2021

Evaluation of Security

Minimum cut-set -> set of atomic attacks that achieve a goal

S = {{Steal credit card, Shouldersurf PIN}

{Hack online Bank acount}}

Impact of certain atomic attacks on the overall system security

Attack Trees: systematic ways to describe system vulnerability , making possible
to assess risks and making security decisions

Attack trees: reusable as part of a larger attack tree for a system

Quantitative evaluation of dependability 27FMSS, 2020-2021

EVITA: Attack tree structure

Quantitative evaluation of dependability 28

[EVITA-D2.3] E-safety vehicle intrusion protected applications (EVITA) project. Project reference: 224275

Programme: EU Seventh Reserch Framework Programme (2007–2013) Deliverable D2.3. Security requirements for
automotive on-board networks based on dark-side scenarios.

Each attack method will be based

on a logical combination

(AND/OR) of attacks against one

or more “assets” populating the

lowest levels of the attack tree.

Probability of success can

be estimated for asset attacks

FMSS, 2020-2021

Reference architecture

Taken from [EVITA-D2.3]

Quantitative evaluation of dependabilityFMSS, 2020-2021

Attack tree : Compromise driver privacy

30

Misuse the OBD updates or

manipulate the CU to gain access

to personal data.

Quantitative evaluation of dependabilityFMSS, 2020-2021

Attack trees

31Quantitative evaluation of dependability

Attack trees:
do not capture the dependence of security vulnerability and attacks
as well as sequences of attacks steps

Stochastic assumptions are needed to describe systems that have yet to be built and for
systems whose set of vulnerability is unknown.

state-based stochastic methods application in security context

FMSS, 2020-2021

Models for security analysis

These models must describe

1. How and when security attacks occur
2. Impact of an attack on the system when it is executed successfully
3. Mechanisms, effects and costs of system recovery, system maintenance

and defenses

There are differences with classical dependability
- In the nature and details of security models

Asset: information or resources that could be subject to attack

Quantitative evaluation of dependability 32FMSS, 2020-2021

ADversary VIew Security Evaluation - ADVISE

33Quantitative evaluation of dependability

These set of slides are based on the paper:
E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders and C. Muehrcke, "Model-based Security Metrics Using ADversary VIew

Security Evaluation (ADVISE)," 2011 Eighth International Conference on Quantitative Evaluation of SysTems, Aachen,
2011, pp. 191-200.

FMSS, 2020-2021

ADversary VIew Security Evaluation - ADVISE

34Quantitative evaluation of dependability

Executable state-based security model system
1. A system

2. An adversary view (how the adversary can
attack the system)

3. Security metrics

Main objective:
- Compare security strenght of different system architectures
- Analyse threats by different adversaries

An attack is specified in terms of many small
attack steps.

Specification of an Attack Execution Graph
(AEG)

Attack decision function
how the adversary selects the most
attractive next attack step

FMSS, 2020-2021

Attack Execution Graph - AEG

35Quantitative evaluation of dependability

Attack execution graph (AEG)
<A, R, K, S, G>

A: set of attack steps

R: set of access domains in the system

K: set of knowledge items relevant to attack the system

S: set of the adversary attack skills

G: set of adversary attack goals revelan to to the system

Attack step

Access

Know
ledge

Skill

Goal

Mobius tool
https://www.mobius.illinois.edu/

FMSS, 2020-2021

Gain coorporate net access through VPN

36Quantitative evaluation of dependability

ADVISE: AEG

E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders and C. Muehrcke, "Model-based Security Metrics Using ADversary VIew
Security Evaluation (ADVISE)," 2011 Eighth International Conference on Quantitative Evaluation of SysTems, Aachen,
2011, pp. 191-200.

Example of AEG taken from paper

Gain coorporate net access through
Local Physical Access

Embarass
Company

Coorporate
network
access

Internet
Access

VPN
Exploit

Skill

VPN
Password

knowledge

Local
Physical
Access

Attack stepAttack step

FMSS, 2020-2021

Attack Step

37Quantitative evaluation of dependability

ai = <Bi, Ti, Ci, Oi, Pri, Di, Ei>

Pri: X x O -> [0, 1]
prob. of outcome o after the attack
(So Pr (s, o) = 1)

Di: X x O -> [0, 1]
probability that the attack is detected when
outcome o occurs

Ei: X x O -> X
next state when the outcome o occurs

Bi: X ->{true, false}
precondition to check if the attack is enabled
The adversary has the access, the knowledge, and/or skill
needed for the attack and the adversary does not have what
can be gained when the attack is executed with success

Ti: X x R+ -> [0,1]
time required to execute the attack.
Ti (s) is a random variable defined over a prob. distribution
function

Ci: X -> R>=0

cost of attempting the attack

Oi:
finite set of outcomes (e.g., success and failure)

X is defined as the set of all reachable model states
X= {s1, …, sn}

FMSS, 2020-2021

Attack Step do-nothing

38Quantitative evaluation of dependability

there is always at least one attack step in the AEG whose precondition is satisfied

aDN = do-nothing

DDN

detectability is zero

EDN (s,o) = s
the next state is the same of the current state

PrDN(s, o) = 1
there is only one outcome, with probability 1

BDN

precondition is always true

TDN

time between two occurrences
of do nothing

CDN

cost is zero

Every AEG contains the aDN attack step

FMSS, 2020-2021

Model state s

39Quantitative evaluation of dependability

A state s in X reflects the progress of the adversary in attacking the system

Rs : set of domains that the adversay can access

Ks : set of knowledge of the adversary

Gs : set of attack goals achieved by the adversary

s = < Rs, Ks, Gs >

FMSS, 2020-2021

Adversary Profile definition

40Quantitative evaluation of dependability

Adversay Profile = < s0, L, V, wC, wP, wD, UC, UP, UD, N>

s0: initial state of the model

L: attack skill level function

V: attack goal value function

wC, wP, wD : weights for preferences: weight for for cost, payoff, detection
probability

UC, UP, UD: utility functions for cost, payoff, detection probability

N: planning horizon
FMSS, 2020-2021

Adversary Profile definition

41Quantitative evaluation of dependability

s0: starting point of the adversary attack
different for insider (more access and knowledge) and outsider adversary

L is the attack skill level function
L : S -> [0, 1] maps each attack skill to a value in [0, 1] (proficiency of the adversary)

V is the attack goal value function
V: G -> R>=0, monetary value of each attack goal in the AEG from the adversary
viewpoint , more valuable -> larger value

Payoff value P(s) of a state s is a function of the value of all goals V(g) achieved in the
model state P(s)= f(V(g))

Adversay Profile = < s0, L, V, wC, wP, wD, UC, UP, UD, N>

FMSS, 2020-2021

Adversary Profile definition

42Quantitative evaluation of dependability

Adversay Profile = < s0, L, V, wC, wP, wD, UC, UP, UD, N>

Attack preference weight: attactiveness in each of the three criteria when deciding an
attack. They are a value in [0,1]

WC: relative attactiveness of decreasing the cost in attemping the attack step

WP: relative attactiveness of increasing the payoff for successfully executing
the attack step

WD: relative attactiveness of decreasing the probability of being detected during
or after the attack

FMSS, 2020-2021

Adversary Profile definition

43Quantitative evaluation of dependability

Adversay Profile = < s0, L, V, wC, wP, wD, UC, UP, UD, N>

Utility functions: map the native value of each attractiveness criterion to a
[0, 1] utility scale (higher utility values represent more desirable values)

UC: R>=0 -> [0, 1] map the monetary value of the attack step cost to a [0, 1]
lower cost - higher utility value

UP: R>=0 -> [0, 1] map the monetary value of the attack step payoff to a [0, 1]
higher payoff - higher utility value

UD: [0, 1] -> [0, 1] map the probability of attack step detection to a [0, 1]
lower detection probability - higher utility value

FMSS, 2020-2021

ADVISE model: execution

44Quantitative evaluation of dependability

As is the set of available attack steps ai in state s:
the attack steps whose precondition is satisfied (Bi(s)=True)

The attractiveness of the all available attack steps is evaluated from the viewpoint
of the adversary with the criteria
- Cost
- Detectability
- Expected payoff in the next state

The attack decision function chooses the next attack step
The attack step outcome determines the next state (the outcome is stochastic)
The process is repeated

FMSS, 2020-2021

ADVISE model: attack decision function

45Quantitative evaluation of dependability

Short sighted adversary attack decision function
attr(ai, s) = wC Ci(s) + wP Pi(s) + wD Di(s)

linear combination of adversary preferences weights with the data about attack step

Pi(s) = So (P(Ei(s,o)) . Pri(s, o)) Di(s)= So (Di(s,o) . Pri(s, o))

Payoff in the next state
reached by outcome o (Ei(s,o))

b(s) best next attack step
{a* in As | attr(a*, s) = max { attr(ai, s) forall ai in As } }

one of the maximally attractive attack steps is chosen uniformely

expected payoff

FMSS, 2020-2021

ADVISE model: execution

46Quantitative evaluation of dependability

Utility function UC UP UD are not shown in attr(ai, s) for semplicity
They should be applied to move towards a common unit of utility.
Ci(s) ---- UC (Ci(s))
Pi(s) ---- UP (Pi(s))
Di(s) ---- UD (Di(s))

An attack step outcome is randomly generated using the probabilities
distributions

The attack step outcomes determine the sequence of state transitions

Ci(s) =2.01 million
Ci(s’)=2.05 million
Better mapped -> same
utility value

Ci(s) =10.000
Ci(s’)=50.000
better mapped -> two
distinct utility values

FMSS, 2020-2021

ADVISE execution algorithm

47Quantitative evaluation of dependability

Time <- 0
State <- s0

while Time < t do
Attacki <- b(State)
Outcome <- o, ------ o, Probi(State)
Time <- Time +t, ------ t, Ti(State)
State <- Ei (State, Outcome) ------- Ei, next state

function
end while

ADVISE model execution algorithm

FMSS, 2020-2021

ADVISE metrics specification

48Quantitative evaluation of dependability

State metrics < t, l, s>

t is the end time [0, t]

l is the type of state metrics :
EndProb: probability of being in state s at time t with s(s)=True
AvgTime : average amount of time spent in state s such that s(s)= True

in the interval [0, t]

s is the state indicator function: s= <R, K, G>
s(s) returns True, for states of interest
e.g., s(s) = true if goal g1 has been achieved

FMSS, 2020-2021

ADVISE metrics specification

49Quantitative evaluation of dependability

Event metrics < t, d, e>

t is the end time [0, t]

d is the type of event metrics : let e a set of events
Freq: number of occurrences of events in e in the interval [0, t]
ProbOcc : prob. that all the events in e occur at least once in the interval [0, t]

e is a set of events in the model
(attack steps, attack step outcomes, access domains, knowledge or goals)

Example
Frequency of attack step ai in the interval [0, t]
e is equal to {ai}

FMSS, 2020-2021

ADVISE model

50Quantitative evaluation of dependability

In the paper:

- more sophisticated adversary decision with a long range
planning attack decision function are shown
(State Look-Ahead Tree)

- A case study on a SCADA (Supervisory Control and Data
Acquisition) architecture is analysed: 2 variants of the
architecture and 4 different profiles of adversaries.

FMSS, 2020-2021

