
1

Secure Information FlowBytecode: Information flow

explicit flow

implicit flow

x is loaded onto the stack, then it is stored into y, that is, y depends explicitly on x

variable x is loaded onto the stack. Depending on the value of x, either the constant 1

or the constant 0 is pushed onto the stack, and successively stored onto y

In both cases observing the final value of y reveals information on the value of x

op pop two operands off the stack, perform the

operation, and push the result onto the stack
pop discard the top value from the stack

push k push the constant k onto the stack

load x push the value of variable x onto the stack

store x pop off the stack and store the value into x

if j pop off the stack and jump to j if non-zero

goto j jump to j

halt stop

Secure Information flow in Java bytecode

3

Secure Information FlowImplicit flow

Implicit flow starts at [2]

When implicit flow terminates?

[6] is the first instruction that is common to both

branches

The implicit flow terminates at [6]

[6] is the first instruction that is not under the implicit flow

[1]

[2]

[3]

[4]

[6]

[5]

[7]

4

The implicit flow of an if instruction at address i

terminates at the instruction with address ipd(i)

immediate postdominator of i: the first node

belonging to all paths from i

ipd(i) = j

i

j

We use the concept of immediate postdominator on the CFG of the program

to handle implicit flows

Implicit flow

i1

i

j

Implicit flow

immediate postdominator of i1: the first

node belonging to all paths from i

ipd(i1) = j

Nested implicit flows

The innest implicit flow is the implicit flow

that terminate first

IPD stack:

when executing an instruction, the ipd stack

mantains information on the open implict

flows

IPD stack is updated any time a control

instruction is enetered and any time a

control instruction terminates

What about nested control instructions?

i1

i

j

Implicit flow

Execution of instructions

when an instruction j is executed: if the

instruction j is the top of the ipd stack, the

stack is updated by executing pop (j is

removed from the stack)

…before i ……. Stack of ipd: l

i: control instruction Stack of ipd: ipd(i)

i1: control instruction Stack of ipd: ipd(i1)

ipd(i)

j: top of the ipd stack Stack of ipd: ipd(i)

j: top of the ipd stack Stack of ipd: l

CONTROL REGION

of a branching

instruction

i1

i

j

Implicit flow

Execution of instructions

when an instruction j is executed: if the

instruction j is the top of the ipd stack, the

stack is updated by executing pop (j is

removed from the stack)

…before i ……. Stack of ipd: l

i: control instruction Stack of ipd: ipd(i)

i1: control instruction Stack of ipd: ipd(i1)

ipd(i)

j: top of the ipd stack Stack of ipd: ipd(i)

j: top of the ipd stack Stack of ipd: l

CONTROL REGION

of a branching

instruction

i1

i

j1

Implicit flow

j
ipd(i) = j

ipd(i1) = (j1)

9

the stack may be manipulated in different ways by the branches of a

branching instruction: they can perform a different number of pop and

push operations, and with a different order.

Basics of information flow

Influence of the implicit flow onto the operand stack

The length and the content of the operand stack may be a means by which

security leakages can occur

The stack is empty or not, depending on the value of x

10

Secure Information flow

Basics of information flow

A program P= <c, H, L > satisfies secure information flow if the final

value of each low variable does not depend on the initial value of

the high variables.

H={x} L={y}

11

STATES L  A M  S  A*

< , PC, M, S, r >

 security environment

PC program counter

M memory

S operand stack (k,) …. (k’,’)

r ipd stack (j, )…..(j’, ‘)

if r = (j1, 1)…..(jn, n)

there are n open implicit flows

j1 holds the address where first implicit flow terminates

1 holds the level of the environment that must be restored

if r = l

there are no open implicit flow

Concrete Semantics

IPD

Stack

r

12

c[i]= load x , M[x] = (k, ), not_top(i, r)

load ___

<  , i, M, S, r > →
<  , i+1, M, (k,   ) · S, r >

Transition relation rules

13

c[i]= store x , not_top(i, r)

store ___

< , i, M, (k, ) · S, r > →
< , i, M[(k,   )/ x], S, r >

Transition relation rules

14

ipd ___

<  , i, M, S, (i, ) . r’> → <  , i , M, S, r’>

r = (i, ) . r’

Transition relation rules

i is the ipd of a control instruction

15

goto ___

<  , i, M, S, r> → <  , j, M, S, r>

c[i]= goto j , not_top(i, r)

Transition relation rules

i is the ipd of a control instruction

16

c[i]= if j , not_top(i, r)

if-false __

<  , i, M, (0, ) · S, r > →
<    , i+1, up(M), up(S), (ipd(i), ) r >

An implicit flow begins, whose level is the least upper bound between

the security environment () and the security level of the condition of
the if (). The new security environment is (  )

(ipd(pc), ) is pushed on the ipd stack r

up(M) upgrades the value of the variables assigned in the

scope of the implicit flow beginning at PC

up(S) upgrades all elements in the stack

if : assume condition non-zero

Transition relation rules

17

c[i]= if j , k!=0, not_top(i, r)

if-true__

<  , i, M, (k, ) · S, r > →
<    , j, up(M), up(S), (ipd(i), ) . r >

An implicit flow begins, whose level is the least upper bound between

the security environment () and the security level of the condition of
the if (). The new security environment is (  )

(ipd(pc), ) is pushed on the ipd stack r

up(M) upgrades the value of the variables assigned in the

scope of the implicit flow beginning at i

up(S) upgrades all elements in the stack

Transition relation rules

18

the abstract semantics:

• abstracts concrete values into their security level:

 (k,)=

• uses the same rules of the concrete semantics on the

abstract domains

Both rules for if are always applied -

A(P) : abstract transition system for P
• finite

• multiple path

• each path of C(P) is correctly abstracted onto a path of A(P)

Abstract operational semantics

19

Theorem 1

A program P satisfies SIF if for each state of A(P) such

that c[i] = halt , then for each x in L it is:

M[x] = L (value)

or

M[x]=(i, L) for some i (address)

Results

20

An example: concrete semantics
x:(0,H) y:(1,L)

ipd(2) = 5, ipd(6)=10
<ENV, PC, [M(x), M(y)], Stack, IPDstack>

21

Abstract semantics

Colluding apps

Java cards:

Secure interactions in Java cards

➢ Typical Aplications: Credit cards, Electronic cash, Loalty

systems, Helthcare, Government identification

➢ Smart cards: embedded systems that allow to store and

process information

➢ Java cards:

Java Virtual machine / applications (applets) are portable

➢ Multiapplicative Java cards: applets can be downloaded and

installed on card after the card issuance

➢ Applet’s sensitive data must be protected against

anouthorised accesses

Java cards

Smart card hardware & native system

Java Card Runtime Environment

JCVM Framework classes

Auth.

applet

Purse

applet

Loyalty

appletCard reader

Multiapplicative Java cards

Java cards

➢Security in Java cards is a combination of the security mechanisms in

Java and additional security procedures imposed by the card platform

JAVA security mechanisms

PERSISTENT and TRANSIENT objects

ATOMICITY and TRANSACTIONS

➢ The Firewall forces the isolation

between objects of applets belonging

to different packages

FIREWALL

Java cards security

26

Communication between packages

➢ Based on access control checks

➢ Place restrictions on the applets that can access to methods of applets
belonging to other packages

➢ Does not control the propagation of the information from an applet of a
package towards applets of other packages

Applet A1

Package A

Applet B1

Package B

Applet C1

Package C

SIO

SIOSIO

Limits of the firewall

Security levels assigned to

packages

Lattice of security levels

Secure Information Flow: check that information exchanged between

- A and B has a security level equal to or lower than A+B

- A and C has a security level equal to or lower than A+C

- B and C has a security level equal to or lower than B+C

Secure Information Flow

A B

A+B

C

B+C
A+C

A+B+C

None

JCIFV performs the analysis according to the following main steps

1. Unique security levels are automatically assigned to packages and
shareable interface objects. An initial security level is assigned to the
other methods and object fields

2. CAP file (native code of an applet) is decoded and saved as a bytecode

3. Abstract interpretation of the bytecode is performed

4. The analysis stops when the state of the abstract interpreter does not
longer change and all methods have been analyzed

5. Secure information flow is checked

Java Card Information Flow Verifier

30

Purse: log-full service (logFull()), which notifies registered

applets that the transaction log is going to be over-written

.

Airmail: registered for the log-full service

RentACar: not registered for the log-full service

Electronic Purse

31

Assume that AirFrance requests RentACar the amount of miles

(getBalance()) every time Purse notifies AirFrance that the

transaction log is full.

logFull() method implemented by AirFrance contains an invocation of

method getTransaction() of Purse followed by an invocation of method

getBalance() of RentACar.

Applet RentaACar, whenever observes an invocation of getBalance(),

can infer that Purse is going to over-write the transaction log.

Thus, even without subscribing to the log-full service, RentACar

is able to benefit from such a service.

Purse is not able to detect such information flow.

illicit information flow from Purse to RentACar caused by a method

invocation (no parameters) from AirMiles and RentAcar

Electronic Purse

