
Theorem Prover:

Prototype Verification System

Thanks to  Prof. Andrea Domenici for providing useful inputs for this slides



Proved sequent

A sequent is proved(true) if:

1. at least one antecedent is false; or

2. at least one consequent is true; or

3. there is a formula that occurs both as an antecedent and as a consequent.
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x y x => y

False False True

False True True

True False False

True True True

A1 ∧ A2 ∧ . . . ∧ An ⇒ B1 ∨ B2 ∨ . . . ∨ Bm



The PVS Specification Language 

▪ Logical connectives: NOT, AND, OR, IMPLIES, . . .

▪ Quantifiers: EXISTS, FORALL.

▪ Base operators: IF-THEN-ELSE, COND.

▪ Theories: named collections of definitions and formulae. A theory 

may be imported(and referred to) by another theory.

▪ A large number of pre-defined theories is available in the prelude

library. 
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Useful commands

(while holding left Alt button hit x and start typing)

▪ change-context

▪ Used to change the context to the folder when the theory under analysis is located

▪ prove 

▪ Move the cursor on a sentence that you want to prove and then use it to start the proof

▪ x-prove

▪ Same as the previous one but also start the interface with the tree of the proof 

Useful prover commands (type the following commands within parenthesis () )

▪ grind

▪ Automatically tries to solve a sequent

▪ induct <var>

▪ applies induction rule on variable <var>
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Useful prover commands cont’d

▪ flatten opt <id>

▪ applies logical simplification of the antecedent or consequent with number <id>

✓ If <id> is missing it is applied to the first element 

▪ split opt <id>

▪ splits the element <id> creating two simplified branches

✓ If <id> is missing it is applied to the first element 

▪ expand <var>

▪ expands variable <var> with its definition

▪ lemma <name>

▪ adds as an antecedent the sentence with name <name>   

▪ skeep

▪ in mathematics, proof starts with “Let n be a natural number” this is a skolemization

▪ inst?

▪ in mathematics, “Let n = 19” is an instantiation

525 May 2021



When to apply the prover commands

Recall logical equivalences:

▪ P => Q is equivalent to (NOT P) OR Q

▪ P IFF Q is equivalent to (P => Q) AND (Q => P)
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Location

TOP level logical connective

OR, => AND, IFF

Antecedent (split) (flatten)

Consequent (flatten) (split)



When to apply the prover commands for quantifiers
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Location

TOP level quantifier

FORALL EXISTS

Antecedent (inst?) (skeep)

Consequent (skeep) (inst?)

Embedded quantifiers must be brought to the outermost level

for quantifier rules to apply

e.g. FORALL x: EXISTS y: ….. 

you need to solve the FORALL first and the EXISTS later



Type Correctness Conditions (TCCs)

▪ Some functions and statements may lead to proof obligations called type 

correctness conditions (TCCs). The user is expected to discharge these proof 

obligations with the assistance of the PVS prover.

▪ Theories with unproved TCCs are not valid!

▪ Examples:

▪ Recursion termination

▪ COND coverage

▪ Subtype predicate validation

▪ Useful Commands:

▪ tc : typecheck and generate TCCs

▪ prove-tccs-theory (with default strategy): try to automatically discharge TCCs

▪ tccs: show all the TCCs generated and current status:

▪ Proved complete, proved incomplete, unchecked, subsumed, trivially TRUE
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