
Theorem Prover:

Prototype Verification System

Thanks to Prof. Andrea Domenici for providing useful inputs for this slides

Proved sequent

A sequent is proved(true) if:

1. at least one antecedent is false; or

2. at least one consequent is true; or

3. there is a formula that occurs both as an antecedent and as a consequent.

225 May 2021

x y x => y

False False True

False True True

True False False

True True True

A1 ∧ A2 ∧ . . . ∧ An ⇒ B1 ∨ B2 ∨ . . . ∨ Bm

The PVS Specification Language

▪ Logical connectives: NOT, AND, OR, IMPLIES, . . .

▪ Quantifiers: EXISTS, FORALL.

▪ Base operators: IF-THEN-ELSE, COND.

▪ Theories: named collections of definitions and formulae. A theory

may be imported(and referred to) by another theory.

▪ A large number of pre-defined theories is available in the prelude

library.

325 May 2021

Useful commands

(while holding left Alt button hit x and start typing)

▪ change-context

▪ Used to change the context to the folder when the theory under analysis is located

▪ prove

▪ Move the cursor on a sentence that you want to prove and then use it to start the proof

▪ x-prove

▪ Same as the previous one but also start the interface with the tree of the proof

Useful prover commands (type the following commands within parenthesis ())

▪ grind

▪ Automatically tries to solve a sequent

▪ induct <var>

▪ applies induction rule on variable <var>

425 May 2021

Useful prover commands cont’d

▪ flatten opt <id>

▪ applies logical simplification of the antecedent or consequent with number <id>

✓ If <id> is missing it is applied to the first element

▪ split opt <id>

▪ splits the element <id> creating two simplified branches

✓ If <id> is missing it is applied to the first element

▪ expand <var>

▪ expands variable <var> with its definition

▪ lemma <name>

▪ adds as an antecedent the sentence with name <name>

▪ skeep

▪ in mathematics, proof starts with “Let n be a natural number” this is a skolemization

▪ inst?

▪ in mathematics, “Let n = 19” is an instantiation

525 May 2021

When to apply the prover commands

Recall logical equivalences:

▪ P => Q is equivalent to (NOT P) OR Q

▪ P IFF Q is equivalent to (P => Q) AND (Q => P)

625 May 2021

Location

TOP level logical connective

OR, => AND, IFF

Antecedent (split) (flatten)

Consequent (flatten) (split)

When to apply the prover commands for quantifiers

725 May 2021

Location

TOP level quantifier

FORALL EXISTS

Antecedent (inst?) (skeep)

Consequent (skeep) (inst?)

Embedded quantifiers must be brought to the outermost level

for quantifier rules to apply

e.g. FORALL x: EXISTS y: …..

you need to solve the FORALL first and the EXISTS later

Type Correctness Conditions (TCCs)

▪ Some functions and statements may lead to proof obligations called type

correctness conditions (TCCs). The user is expected to discharge these proof

obligations with the assistance of the PVS prover.

▪ Theories with unproved TCCs are not valid!

▪ Examples:

▪ Recursion termination

▪ COND coverage

▪ Subtype predicate validation

▪ Useful Commands:

▪ tc : typecheck and generate TCCs

▪ prove-tccs-theory (with default strategy): try to automatically discharge TCCs

▪ tccs: show all the TCCs generated and current status:

▪ Proved complete, proved incomplete, unchecked, subsumed, trivially TRUE

825 May 2021

