
1

Petri nets

2

Petri nets

• Petri nets: High-level modelling formalism for concurrent and

distributed systems (Petri, Carl A. (Ph. D. Thesis), University of

Bonn, 1962)

• Stochastic Petri nets

temporal and probabilistic information added to the model

the approach aimed at equivalence between SPN and MC

idea of associating an exponentially distributed random delay

with the PN transitions (1990)

• SAN nets

Stochastic Activity networks

extension to Stochastic Petri nets (data structure, complex

firing rules, global variables, ….) (2001)

3

Petri nets

Place

Transition

Token

Arcs

A Petri net consists of places, transitions, and arcs. Arcs are from

a place to a transition or vice versa.

Places may contain a discrete number of marks called tokens.

Graphycally:

- the places with an arc that runs from the place to a transition are

called the input places of the transition

- the places with an arc that runs from the transition to a place are

called the output places of the transition

4

Petri nets

Marking of the network:

any distribution of tokens over the

places. This represents a configuration

of the network.

A transition of a Petri net may fire if it is enabled, i.e. there are

sufficient tokens in all of its input places

This is named the weight of the arc (by default 1).

When the transition fires, it consumes the required input tokens,

and creates tokens in its output places.

Petri nets are well suited for modeling the concurrent behavior

of distributed systems.

5

Petri nets

t enabled if:

we write

t, y transitions
preset

postset

P: places

T: transitions

F: arcs

W: weight

M0 : initial marking

6

Transition firing

Firing rule

We write

M0 [t>M1

M0=(2,3,0,0)

M1=(1,0,2,1)

The firing of a transition is atomic (a single non-interruptible step)

7

Reachable marking RN(M):

1,0,2,1

Reachability graph M0

M1

2,3,0,0

t

Transition sequence

Let then

If then is a transition sequence

8

At any time, one of the enabled transitions is executed at a time

If multiple transitions are enabled, these transitions will fire in any

order. The execution of Petri nets is nondeterministic

Evolution of the net

M0 [T1 T2> M** M0 [T2 T1> M’’

T1, T2 not in conflict

M** = M’’

9

Conflict resolution

Evolution of the net

M0 [T1> M1 M0 [T2> M2

M0=(1,0,0,) M1=(0,1,0)
M0=(1,0,0,) M2=(0,0,1)

T2 not enabled in M1 T1 not enabled in M2

T1, T2 are in conflict

For example, when T1 fires,

T2 is no more enabled

10

Analysis

Simulation

Reachable markings

Conditions on reachable markings

Transition invariants

Place invariants

Transitions never enabled

Deadlock

………………………

11

Buffer
(2 slots)

Producer Consumer

Producer/Consumer example

deposit
produce consumetake

p2

p1

c1

c2

free

busy

12

Dependabilty evaluation and Petri nets

➢ System description with Petri nets

➢Place:

➢a system component (one for every component)

➢a class of system components (CPU , Memory, ..)

➢components in a given state (CPU, FaultyCPU, ..)

➢…….

➢Token:

➢number of components (number of CPUs)

➢Occurrence of an event (fault, ..)

➢…..

➢Transitions:

➢Occurrence of an event (Repair, CPUFaulty, …)

➢Execution of a computation step

➢…

13

Timed transitions

Timed transition: an activity that needs some time to be executed

-assigning a delay (local time d) to each transition

-assigning a global time to the PN

When a transition is enabled a local timer is set to d;
- the timer is decresed

- when the timer elapses, the transition fires and remove tokens
from input places

- if the transitions is desabled before the firing, the timer stops.

Handling of the timer (two alternatives):

Continue:
the timer maintains the value and it will be used when the transition is enabled again

Restart:
the timer is reset

14

Sequence of timed transitions:

(tk1, tk1) … (tkn, tkn)

where

tk1 <= tk2 <= tkn

[tki, tki+1) is the period of time between the firing of two transitions

in this period of time the net does not change the marking

STOCHASTIC PETRI NET:

when the delay d of a timed transition is a random variable

15

when the delay is a negative exponential distribution random variable

Reachability graph -> Markov chain

Transition rate: lk is the transition rate (positive real number) of transition Tk

➢ delay of transition T1 random variable exponentially distributed with parameter l1

➢ delay of transition T2 random variable exponentially distributed with parameter l2

Assumption: delay of transitions independent

Stochastic Petri nets (SPN)

16

Stochastic Petri nets (SPN) – reachability graph

A timed transition T enabled at time t, with d the random

value for the transition delay, fires at time t+d

if it remains enabled in the interval [t, t+d)

17

Stochastic Petri nets (SPN)

➢ Conflict resolution

The solution of the conflict depends on the delay of T1 and T2

18

➢ Two identical CPUs

➢ Failure of the CPU: exponentially distributed with parameter l

➢ Fault detection: exponentially distributed with parameter d

➢ CPU repair: exponentially distributed with parameter m

A redundant system with repair

SPN

Reachability graph

healty faulty

repair

Tf

TdTr

19

➢ Steady-state probability that both processors behave

correctly

➢ Steady-state probability of one undetected faulty processor

➢ Steady state probability that both processors must be

repaired

➢

Properties

Markov chain

failure rate = l

detection rate = d

repair rate = m

20

Example

lm failure rate for memory

lp failure rate for processor

Multiprocessor system with 2 processors and 3 shared memories system.

System is operational if at least one processor and one memory are

operational.

21

Stochastic Petri net (SPN)

Tp-fail, lp Tm-fail, lm

Pworking

Pfaulty

Mworking

Mfaulty

System state: (Pworking, Mworking, Pfaulty, Mfaulty)

Initial state (2,3,0,0)

(2,3,00) -> Tp-fail (1,3,1,0) -> Tm-fail (1,2,1,1) -> ….

Tp-repair, mp

Tm-repair, mm

22

Stochastic Activity Networks (SANs)

23

Stochastic Activity Networks (SANs)
A system is described with SANs through four disjoint sets of nodes:

- places

- input gates

- output gates

- activities

activity:

instantaneous or

timed (the duration is expressed via a time distribution function)

input gate:

enabling predicate (boolean function on the marking) and an input function

output gate:

output function

Cases and case distribution:

instantaneous or timed activity may have mutually exclusive outcomes,

called cases, chosen probabilistically according to the case distribution

of the activity. Cases can be used to model probabilistic behaviors.

Output gates allow the definition of different next marking rules for the cases of the activity

24

Other extension to PN:

Shared variables

(global objects that can be used to exchange information among

modules)

Extended places

(places whose marking is a complex data structure instead of a

non-negative integer)

25

Stochastic activity networks

26

Example

Enabling predicates, and input and output gate functions

are usually expressed using pseudo-C code.

Graphically, places are drawn as circles, input (output) gates

as left-pointing (right-pointing) triangles, instantaneous activities

as narrow vertical bars, and timed activities as thick vertical bars.

Cases are drawn as small circles on the right side of activities.

27

SAN evolution starting from a given marking M

(i) the instantaneous activities enabled in M complete in some unspecified

order;

(ii) if no instantaneous activities are enabled in M, the enabled (timed)

activities become active;

(iii) the completion times of each active (timed) activity are computed

stochastically, according to the respective time distributions;

the activity with the earliest completion time is selected for completion;

(iv) when an activity (timed or not) completes, the next marking M’ is

computed by evaluating the input and output functions;

(v) if an activity that was active in M is no longer enabled in M’, it is removed

from the set of active activities.

Case activity: generate_input

