
Modeling and verification certain classes of systems

extensions of finite state-transition systems

I Model Checking Real-Time Systems
TCTL formulae, a natural extension of CTL

I Model Checking Security Protocols

I Model Checking Probabilistic Systems
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Timed Automata

I A timed automaton consists of an automaton (states and transitions) and
real-valued variables for measuring time between transitions, named Clocks

I Clocks progress synchronously with time (time domain R+), and can be reset
by transitions

I a transition consists of a guard, an action and a reset of clocks

I invariants can be added to states

I The operational semantics of a timed automaton is an (infinite-state) timed
transition system.

Rajeev Alur and David L. Dill.
A theory of timed automata, Theoretical Computer Science, 126, 2, 1994
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An example

This timed automaton has one clock: x

This automaton moves from initial state s0 to s1 by executing action a. The clock
x is set to 0 along this transition.
While in state s1, the clock x shows the time elapsed since the occurrence of the
last a.
The transition from s1 to s0 is enabled only if this value is less than 2.
The the automaton moves back to state s0 and the cycle is repeated.
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Another simple example

This timed automaton has one clock: x

This automaton leaves the initial state s0 by executing action buttonpress, and
reset the clock x to 0. If action buttonpress is executed again before 10, the
automaton moves to state s2, and, when the clock reaches 10, recognises a
double click of the button. Otherwise, being in state s1, when the clock reaches
10, the automaton recognises a single click of the button.
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Another example

The timed automaton has two clocks: x and y .
The automaton cycles among the states s0, s1, s2, s3

Clock x is set to 0 each time it moves from s0 to s1 executing a.
c happens within time 1 from the preceeding a
clock y is set while executing b
the delay between b and the following d is greater than 2
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Timed Automata
x,y: clock
transition relation: s

action,time−→ s′

s0
a−→ s1

c−→ s1
b−→ s0 · · ·

3.2 5.1 8.2

value of x : 0 0 1.9 5 · · ·
value of y : 0 3.2 0 3.1 · · ·
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Timed Automata
A transition is labelled with one action, a constraint (guard) and the reset of zero or
more clocks (a, g, r). A reset is a clock to be set to zero.

The state of a timed automaton is given by the location and the values of the
clocks at a given time.
State: (location, x = v , y = w) with v ,w ∈ R+

Execution trace:
(s0, x = 0, y = 0)

a−→ (s1, x = 0, y = 3.2)
c−→

(s1, x = 1.9, y = 0)
b−→ (s0, x = 5, y = 3.1) · · ·

A timed automaton models a system operating in a number of distinct modes.
Each mode is represented by a location. Mode changes occur as a consequence
of the execution of actions.

While the system remains in a given location, progress of time is reflected by the
values of the clocks, whose values increase all at the same rate.
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Adding invariants
Let us consider the following transition of a timed automaton.

Until a does not occur, time alone flows
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Adding invariants

Invariants ensure progress
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Network of timed automata

Complementary actions: two actions of the same name a? and a! are said to be
complementary, or matching.

In a network of timed automata, the complementary actions are synchronisation
actions and become the network internal action, denoted by τ .

Example: a simple lamp
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Semantics

Definition (timed automaton)
A timed automaton is a tuple A = (L, l0, C,E ,Σ, I), where
I L is a finite set of locations;
I l0 ∈ L is the initial location;
I C is a finite set of clocks;
I Σ is the set of actions;
I E ⊆ L× Σ× B(C)× 2C × L is the set of edges between locations with an

action, on the set of clocks and a set of clocks to be reset;
I I : L → B(C) assigns invariants to locations.
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Semantics

Let R be the set of non-negative reals, and u be a clock valuation: u ⊆ C × R.

Definition (Semantics of a timed automaton)
The semantics of a timed automaton is a labelled transition system 〈S, s0,→〉
where S ⊆ L× RC is the set of states, s0 = (l0,u0) is the initial state, and
→: S × (Σ ∪ R)× S is a transition relation such that:

I (l ,u)
d−→ (l ,u + d) if ∀d ′ : d ′ ∈ [0,d ]⇒ u + d ′ ∈ I(l), and

I (l ,u)
a−→ (l ′,u′) if there exists e = (l ,a,g, r , l ′) ∈ E such that:

u ∈ g, u′ = [r 7→ 0]u, and u′ ∈ I(l ′)

where u + d maps each clock x ∈ C to the value u(x) + d , and [r 7→ 0]u
denotes the clock valuation which maps each clock in r to 0 and
agrees with u over C − r .
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Semantics

Definition (Network of timed automata)
A network of timed automata consists of n timed automata over the same set of
actions and clocks, Ai = (Li , l0i , C,Σ,Ei , Ii), i = 1, · · · ,n.

Let l̄ = (l1, · · · , ln) be a location vector

Let I (̄l) = ∧i=1,··· ,n I i(li) be the composition of the invariant functions over
location vectors

Let l̄ [l ′i /li ] to denote the vector where the i-th element li of l̄ is replaced by l ′i
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Semantics

Definition (Semantics of a network of timed automata)
The semantics of a network of timed automata is defined as a transition system
(S, s0,→), where: (S = L1 × · · · Ln)×RC is the set of states, s0 = (̄l0,u0) is the
initial state and→⊆ S × S is the transition relation defined by:

I (̄l ,u)
d−→ (̄l ,u + d) if ∀d ′ ∈ [0,d ]→ (u + d ′) ∈ I (̄l).

I (̄l ,u)
a−→ (̄l [l ′i /li ],u

′) if there exists li
a,g,r−−−→ l ′i such that u′ = [r → 0]u and

u′ ∈ I (̄l [l ′i /li ]).

I (̄l ,u)
τ→ (̄l [l ′j /lj , l ′i /li ],u

′) if there exists li
c?,gi ,ri−−−−→ l ′i and lj

c!,gj ,rj−−−−→ l ′j
such that u ∈ (gi ∧ gj), u′[ri ∪ rj 7→ 0]u and u′ ∈ I (̄l [l ′j /lj , l ′i /li ])
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An example

clock: x

Some possible executions ( d→ are not shown)

((off , idle),0)
τ−→ ((low , idle),0)

τ−→ ((bright , idle),5.1)
τ−→ ((off , idle),7)

τ−→
(low ,0) · · · · · ·

((off , idle),0)
τ−→ ((low , idle),0)

τ−→ ((off , idle),22.5)
τ−→ ((low , idle),0) · · · · · ·
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Behaviour with a guard

Some possible executions

((off , idle),0)
τ−→ ((low , idle),0)

τ−→ ((bright , idle),5.1)
τ−→ ((off , idle),7)

τ−→
(low ,0) · · · · · ·

((off , idle),0)
τ−→ ((low , idle),0)

τ−→ ((off , idle),12.5)
τ−→ ((low , idle),0) · · · · · ·

The execution ((off , idle),0)
τ−→ ((low , idle),0)

τ−→ ((off , idle),22.5) is NOT
POSSIBLE because the transition must satisfy the guard x <= 15
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Behaviour with an invariant

clock: x

(off ,0)
τ−→ (low ,0)

τ−→ (off ,32)
τ−→ (low ,0) · · · · · ·

(off ,0)
τ−→ (low ,0)

τ−→ (bright ,5.1)
τ−→ (off ,7)

τ−→ (low ,0) · · · · · ·

(off ,0)
τ−→ (low ,0)

τ−→ (bright ,5.1)
τ−→ (off ,32)

τ−→ is NOT POSSIBLE because
location bright must satisfy the invariant
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Software tools

I Timed automata are a formalism for model checking real-time systems

I A model checker tool for the analysis of timed automata is UPPAAL
https://uppaal.org/
G. Behrmann, A. David, and K. G. Larsen, A tutorial on UPPAAL 4.0, 2006.
https://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

I UPPAAL extends timed automata with integer variables, structured data types
(e.g., arrays and records), user defined functions and channel synchronisation
(e.g., broadcast channels, committed and urgent locations)

I simulation

I model checking of a simplified version of Timed CTL (TCTL) formulae
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Example: a timed automaton in UPPAAL

The timed automaton operates on one clock tr and a variable n. When the clock
is equal to the constant deltaR, an out edge is executed (tr <= deltaR is the
state invariant). If variable n equals to 0, the TA sends a refresh message and
resets the clock. Otherwise (n > 0), only resets the clock.

The TA models the automatic refresh actions performed by a GUI every deltaR
time units, in absence of user actions (n==0). Initially, a random value in the
interval [245,255]ms is assigned to deltaR (4 Hertz)
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Locations in UPPAAL

I normal location with or without invariants

I Urgent locations
equivalent to add an extra clock y that is reset on all incoming edges, and
having an invariant y <= 0 on the location

I Committed locations
a state is comitted if any of the locations in the state is committed.
A committed state cannot delay and the next transition must involve an
outgoing edge of at least one of the committed locations
(more restrictive than urgent locations)
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Clocks and guards

I invariants
an invariant is a conjunction of conditions of the form:
x < expr or x <= expr ,
where x is a clock and expr evaluates to an integer.
invariants must be side-effect free

I guards
expression that evaluates to boolean; clocks and clock differences compared
to integer expressions.
guards over clocks are conjunctions.
only clocks, integer variables and constants are referenced.
guards must be side-effect free

21 / 98



Example 1

Possible behaviours?
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Example 1

A possible execution:
((loop, idle),0)

τ−→ ((loop, taken),2)
τ−→ ((loop, idle),0)

τ−→ ((loop, taken),8)
τ−→

((loop, idle),0) · · · · · ·

Starting from the initial state with x = 0, after a delay >= 2 the net can move into
state (loop, taken). Since the state is committed, the outgoing edge from the
committed location must be executed, ad the clock is reset to 0, and we move to
the initial state.
All reset of x will happen when x ≥ 2.
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Example 2

Possible behaviours?
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Example 2

A possible execution:
((loop, idle),0)

τ−→ ((loop, taken),2)
τ−→ ((loop, idle),0)

τ−→ ((loop, taken),2.8)
τ−→

((loop, idle),0)
τ−→ ((loop, taken),1) · · · · · ·

The system is not allowed to stay in state (loop, idle) for more than 3 time units.
((loop, idle),0)

τ−→ ((loop, taken),8) is not possible.
The transition is taken after a delay between 2 and 3. Clock x has 3 as upper
bound.
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Example 3

Possible behaviours?
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Example 3

A possible execution:
((loop, idle),0)

τ−→ ((loop, taken),2)
τ−→ ((loop, idle),0)

τ−→ ((loop, taken),2.8) · · · · · ·

Another execution:
((loop, idle),0)

τ−→ ((loop, taken),2)

Same behaviour as before, but deadlock may also occur.
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Model checking

E - exists a path ( E in UPPAAL).
A - for all paths ( A in UPPAAL).
G - all states in a path ([] in UPPAAL).
F - some state in a path ( <> in UPPAAL).

A[]p, A<>p, E<>p, E[]p and p –> q

where p is a state formula
p::= a.l | g | p and p | p or p | not p | p imply p

a.l: automaton a is in location l
g: conditions on variables and clocks.
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Model checking

Properties that can be directly checked using the UPPAAL: reachability, liveness,
safety formulae.

deadlock is a special state formula. A state satisfies deadlock if there are no
outgoing actions. This formula can be used to check if the system is deadlock free.

A[] not deadlock
is a special case in UPPAAL for proving that for each reachable state, there exists
at least one outgoing edge.
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Reachability analysis
I Only continuous variables are timers
I Invariants and Guards: x<const, x<=const
I Actions: x:=0
I can express lower and upper bounds on delays
I can partition the state space into a finite set of regions

Let Ci the greatest constant the clock variable xi is compared with. The regions
are determined according to Ci .

Consider two clocks x1 and x2 with C1 = 2 and C2 = 1, we have the following
regions:
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Example 1
P Q

A[] Q.taken imply x>=2
in all states in which Q is in location taken, the clock satisfies x >= 2
when x is reset, x is >= 2

E<> Q.idle and x>3
exists a state in which Q is in location idle and the clock satisfies x > 3
it is possible to delay more than 3 units before the reset
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Example 2

P Q

A[] Q.taken imply (x>=2 and x<=3)
the clock is reset after a delay between 2 and 3

E<> Q.idle and x>3
FALSE
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Example 3

P Q

A[] not deadlock
FALSE

A[] Q.idle imply x<=3
FALSE

the system has no progress condition
P can delay in state loop for more than 3 time units.
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The tool

A[] (deltaR < deltaM and FMU.critical) imply c!=2
proves a property under specific timing constraints
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Simulation
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A network modeling the behavior of a pacemaker
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A network modeling the behavior of a pacemaker

Local clocks. Each automaton enforces some constraint on the intervals between
pairs of events, using clocks named t (this name is local to each automaton).

Global clocks. clk is a global clock and it is accessed both by the URI and the AVI
automata.

Square brackets enclose guards and curly brackets enclose state invariants. Two
concentric circles denote the initial location. Letter C denotes committed locations,
meant to model an immediate transition.

Actions VS?, VP!, AS? and AP! are synchronisation actions towards the model of
the heart (not shown here).
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LRI automaton

The LRI automaton keeps the heart rate above a minimum value, defined by the
Lower Rate Interval (TLRI).
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LRI automaton

The automaton starts in the LRI location. Upon a ventricular event (VP? or VS?),
clock t is reset. Upon an atrial sense event (AS?), the automaton waits in location
ASed until a ventricular event occurs, which causes the automaton to return to the
LRI location, resetting t.

Since an atrial event must occur within TLRI − TAVI seconds after the last
ventricular event, an atrial pulse (AP!) must occur if the automaton remains in LRI
for a longer interval.

This is specified by the invariant {t ∈ TLRI − TAVI} on location LRI and by the
edge labeled with the guard [t > TLRI − TAVI], the action AP!, and the reset of t.
This models the issue of an atrial pacing pulse by the pacemaker.
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Modeling attacks: an example

I modelling a simple WSN protocol

I modelling of attacks and injection of attacks

I analysis of the protocol behaviour in absence and in case of attacks

Model based design of security.
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Modelling a simple WSN protocol

Flooding. Flooding is a one-to-many routing protocol, in which a dedicated node
(the base station) needs to communicate general information to all the nodes of
the network.

As an example, flooding can be applied for dynamic route discovery.
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Modelling a simple protocol

A simple version of flooding behaves as follows: whenever a network node
receives a message, it is forwarded to all its neighbors only if it has not already
been forwarded; otherwise, it is dropped. Moreover, nodes drop old messages
also, when received.

An interesting property of the flooding protocol is the following:

Property P: every node receives all the messages sent by the base station, and
every message that was received is then forwarded only once.
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Protocol specification

I designers and practitioners generally describe communication protocols in
terms of actions performed by a generic networked node
For example, the first time a node receives a message (packet), it is
re-broadcast.

I protocols are described as sequences of steps guarded by control flow
conditions
generally, control flows conditions of network protocols are driven by the value
of information items locally stored on nodes (e.g., received packets or local
timers), or virtually shared among nodes (e.g., global reference clocks
provided by synchronisation protocols).
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Protocol specification

I in communication protocols for wireless sensor networks, communication
channels must be carefully modelled, because they may affect how
information flows in the network, and because they are sensible to several
factors, such as physical distance between nodes, and number of concurrent
communications

I we must define abstractions that retain the information needed for the analysis
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Protocol specification

old messages: messages uniquely identified by their timestamp

originator, data?: not needed for the analysis. A message is abstracted to its
timestamp

each node receive all messages sent by the Base station: timestamp

each node forwards a message only once: for each node, log file of forwarded
messages

Base station sends messages in sequence with a delay of 1 time unit.
Other nodes: no delay model for the reception and forwarding of messages

concurrent execution: for each node, buffer of received messages;
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Modelling elements in UPPAAL

I template system
Basically, network nodes have only one main state from which a set of
outgoing transitions starts. Such transitions account for the
reception/transmission of packets from/to other network nodes.
the node process is named node and has node_t as parameter. Every node
ha a differnt id. All instances of the template node ranging over its parameter
are generated.

I broadcast communication
Network nodes are connected through broadcast channels (broadcast
chan c).
UPPAAL broadcast channel allows one sender to synchronise with an
arbitrary number of recievers. Receivers that can synchronise, must so.
Broadcast are not blocking, if there are no receiver the sender can execute
the send.
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Modelling elements in UPPAAL

I A clock clk is used to implement the process of generation of new messages
after a given delay.

I functions
auxiliary function are defined to improve readability of the specification

I global and local data structures

47 / 98



Protocol specification

I NODES: number of nodes. Nodes are numbered starting from 0;
I MSGS represents the number of messages sent by the Base station;

messages are numbered starting by 1 to MSG;
I DIM is length of array local to nodes

I global structures
- chnl array: broadcast communication channel (indexed by node id);
- bmessages array: stores the messages broadcasted by the nodes at a
protocol step, (indexed by node id);
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Protocol specification

I structures local to a node
- TS: the most recent timestamp of received messages;
- buffer array: a FIFO buffer that stores messages input to the node waiting
to be forwarded, with n the current number of elements; the message to be
sent is in buffer[0].
- logger array: a queue which stores the already broadcasted messages,
with m the current number of elements. Tis array is used to check the
Property P.

I node_t ∈ [0, NODES-1], checker_t ∈ [0, MSGS-1], size_t ∈ [0, DIM-1].
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The network

We refer to a WSN made up of five nodes i) one source node; and ii) four relay
nodes.

We model the topology of the network by a function
neighbour : (NODES × NODES)→ Bool

∀i , j ∈ NODES,neighbour(i , j) = true if j is in the communication range of i and
vice-versa; false otherwise
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The network

We assume the communication range between nodes is one hop. The function
receive(id, i) of relay nodes is tailored on such network parameters, and
returns true if the nodes id and i are one-hop neighbours, false otherwise.

As an example, receive(4, 2) returns true, since Node 2 is a one-hop
neighbour of Node 4.

Conversely, receive(4, 3) returns false, since Node 3 is two-hops far away
from Node 4.
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Global declarations

const int NODES = 5;
typedef int[0,NODES-1] node_t;
typedef int timestamp;
chan chnl [node_t];
timestamp bmessages[node_t];
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Abstract model of the source node.

The source node broadcasts a brand new message at most every 1 time units
(invariant clk<=1). Messages sent by Source node are incrementally
timestamped, from 1 to MSGS, which is the last message sent. After sending MSGS
messages, the Source node stops transmitting.
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Abstract model of a generic relay node.

The relay node is a template parametric with respect to the node identifier: id.
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Abstract model of a generic relay node.

The node has only one location, 5 edges with different input actions
(chnl[0]? · · · chnl[4]?) and one edge with its own output action (chnl[id ]!).

The output action chnl[id]!bmessages[id] represents the action executed by
node id to broadcast the message bmessages[id].

The input action chnl[i]? is the action executed by the node id for receiving a
message from the node i.
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Abstract model of a generic relay node.

I The output action chnl[id]! is enabled only if the global variable
bmessages[id] contains at least one message to send, i.e. if n > 0.

- n represents the number of messages to be forwarded

- buffer[0] represents the messages stored in the head of the local buffer of
the node id, which is the FIFO buffer that contains all the messages to be
forwarded.

- When a message is sent, it is stored into the global array bmessages, i.e.
bmessages[id] = buffer[0], then the function update() is executed for
updating node’s local data structures.
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Auxiliary function.

void update() {
n-;

for( i : size_t )
buffer[i-1]=buffer[i];

if ( m < DIM-1 ) {
logger[m] = bmessages[id];
m++;
}

}

After broadcasting a message, the function update() executes a backward
one-position shift of buffer, and update the log recording the timestamp of the
forwarded message.
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Abstract model of a generic relay node.

I The input action chnl[i]? is always enabled. However, messages
broadcasted by node i are received by node id only if nodes i and id are
neighbors. The function receive(id, i) implements the receiving of
messages from neighbors.
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Auxiliary functions.

void receive(int j) {
if (neighbor(id,j) && (bmessages[j]>TS) && (n<DIM-1)) {

buffer[n] = bmessages[j];
TS = bmessages[j];
n++;
}

}

The test bmessages[j] > TS in the function receive evaluates false when
the node id receives an old (already received) message.
In such cases, the received message is not stored into buffer and is dropped.
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UPPAAL network

sourcenode := source();
node1 := relay(1);
node2 := relay(2);
node3 := relay(3);
node4 := relay(4);
system sourcenode, node1, node2, node3, node4;

Where source() and relay(id) represent the Source node and the Relay
nodes, respectively.
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Formalisation of the property

Recall that checker_t ∈ [0, MSGS-1], and TS ∈ [1, MSGS].

A<>( forall ( i:checker_t ) node1.logger[i] == i + 1 )
A<>( forall ( i:checker_t ) node2.logger[i] == i + 1 )
A<>( forall ( i:checker_t ) node3.logger[i] == i + 1 )
A<>( forall ( i:checker_t ) node4.logger[i] == i + 1 )

For each node, the buffer logger stores all the messages forwarded by it.
Referring to the formulas above, logger[i] represents the (i+1)-th message
that was forwarded by a certain node.

The Property P is proved to be true if, for each relay node, for each i such as i ∈
[0, MSGS-1), logger[i] stores the timestamp i+1. In this case, all nodes
forwarded only once all the messages they received.
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Modeling attacks

We consider two attacks in both of which a node is compromised by an adversary.

Drop attack
In the first attack, at a random time, the compromised node drops exactly one
packet that, instead, should have been sent to its neighbors.

Tamper attack
In the second attack, the compromised node sends exactly one fake packet to its
neighbors. Such a packet contains a fake timestamp, which is ahead in time
compared to the current time. The reception of the fake packet causes, on the
recipient, the discarding of all the genuine packets that carry a timestamp older
than the fake one.

Both the attacks are modeled by adding exactly one transition to the model of the
relay node. Both attacks occur at random time and execute only once.
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Drop attack

attacked is a global flag initialised to false and set to true after the attack
occurrence. Function shift() drops the message from the buffer
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Drop attack

Simulations done via UPPAAL show the results that follow.

I when the adversary compromises Node 1, the Property P is still satisfied,
since Node 3 receives a copy of the dropped packet from Node 2, thanks to
link redundancy;

I when the adversary compromises Node 2, the Property P is not satisfied
anymore because Node 4 does not receive a copy of the dropped packet
since there is no redundancy on links connecting Node 4 with other network
nodes.

Since any node can be attacked, the model checker returns FALSE.
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Tampering attack

The timestamp of the message that is being to be broadcasted is advanced by 2.
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Tampering attack

Simulations done via UPPAAL show the following results.

I When the adversary compromises Node 1, the Property P is not satisfied if
Node 3 receives the fake packet from Node 1 before the genuine packets
carrying timestamps older than the fake one from Node 2. The Property is
satisfied if Node 3 receives from Node 2 all the genuine packets carrying
timestamps older than the fake one before the fake packet from Node 1.

I When the adversary compromises Node 2, the Property P is not satisfied
anymore because Node 4, after receiving the fake packet, discards all the
subsequent genuine packets received from Node 4 that carry timestamps
older than the fake one.

Since any node can be attacked, the model checker returns FALSE.
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Flexibility of the modelling framework

An interesting property would be to prove whether a given topology is resilient to a
given attack or not.

Moreover, the power consumption of a node caused by the reception of fake
packets could be an interesting property to be analysed.

A packet injection attack with a given frequency could be modelled. Even if the
packet injection attack does not interfere with the flooding protocol at application
level, it results in draining the battery of the target node, thus reducing the network
life-time.
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Flexibility of the modelling framework

Timed automata have been used to formally analyse many security protocols.

UPPALL SMC is a new model ckecker, in which the clocks of an automaton may
evolve with various rates. The network behaviour may depend on stochastic rates.
For the analysis, statistical model checking is suggested, an alternative approach
to an exhaustive exploration of the state-space model.
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Model checking Cryptographic protocols

Cryptographic protocols work in an hostile environment

- are difficult to design, and are subject to subtle flaws, even when the
cryptographic primitives are secure

In order to ensure that the protocol always achieve the goal, it is designed under
the assumption that the network is completely controlled by an adversary (intruder)

The intruder can:
- intercept / redirect /alter data
- access to any operation of legitimate agents
- control one or more legitimate agents and access their keys

Set of slides based on the book chapter: D. Basin, C. Cremers, C. Meadows. Model
checking Security protocols. E.M.Clark et al. (eds.), Handbook of Model Checking,
Springer Int. Publishing, 2018.
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Needham-Schroeder public key protocol

The goal of the protocol is to allow two agents, A and B, to authenticate each
other.

We use asymmetric encryption: given an agent j ,
- pk(j) is the public key of j , and
- sk(j) is the private key of j .

Any agent can send a message to agent j using the public key of j for encryption
Only the agent j can decrypt the message using its private key.

At the end of the protocol A and B agree on a the pair of secrets
- NA, a nounce generated by agent A (a random number), and
- NB, a nounce generated by agent B (random number).
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Needham-Schroeder public key protocol

Steps of the protocol
{| · · · |}a stands for asymmetric encryption

Step1. A generates NA
A→ B : {| A,NA |}apk(B)

Step2. B decrypts the message
B generates NB
B → A : {| NA,NB |}apk(A)

Step3. A decrypts the message
A→ B : {| NB |}apk(B)

Step 2. B assumes that the message has been sent by A recently
Step 3. A knows that the received message has been sent recently (it contains NA)
A confirms the assumption of B, sending a message with NB
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Lowe’s man-in-the-middle attack

Agent a wants to communicate with agent i . Agent i is malicious and uses nonce
of a to impersonate a and to communicate with b

Step1. a→ i : {| a,Na |}apk(i)

Step2. i → b : {| a,Na |}apk(b)

Step3. b → a : {| Na,Nb |}apk(A)

Step4. a→ i : {| Nb |}apk(i)

Step5. i → b : {| Nb |}apk(b) (∗)

(∗): the intruder re-encrypts Nb under b public key and sends it to b.
b concludes that he shares Na and Nb with a and a only.
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Lowe’s man-in-the-middle attack

I non-intuitive attack

I security relies on the assumption that agents do not reveal secrets (violated
by i , which sends the nounce of a to b)

I the attack does not depends on flaws in the cryptographic primitives

I the attack requires a very simple adversary model
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Formal model of the adversary (Dolev-Yao approach)

check correctness of protocols with respect to more powerful adversaries

Actions available to the adversary:
- read, redirect and delete messages
- impersonate any agent
-create new messages applying functions available to previously seen data

This model allows to capture many non-intuitive security flaws

Model checking can be used for the analysis of the protocol with this model of the
adversary
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Formal model of the adversary (Dolev-Yao approach)

In the Dolev-Yao approach,
I a protocol is modelled as a machine consisting of an arbitrary number of

honest agents executing the protocol
I all messages sent are intercepted by the adversary
I all messages received are sent by the advesary
I Any message processing done by the adversary is done using an arbitrary

combination of a finite set of operations
I messages are terms rather than strings
I cryptography is perfect
I the only way an adversary has to decript a message is to have the decryption

key.
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Formal model of the adversary (Dolev-Yao approach)

Dolev and Yao proposed polynomial algorithms for proving security of ping-pong
protocols:
- protocols that involve two participants, the sender S and the receiver R.
- in each step, the participant applies a sequence of operators to the last message
received, and sends it back.

Sometimes protocols are vulnerable only to a number of interleaved sessions.

The secrecy problem is
- undecidable for an unbounded number of sessions and nounces
- NP-complete if the number of sessions is bounded.

Bounded-session model checkers (the user the number of sessions) allows to
analyse realistic protocols.
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Formal model of cryptopgraphic protocols

Tools are based on formal models of cryptographic protocols and actions available
to the adversary.

A basic symbolic model
I messages are represented by terms in a term algebra
I protocols are described by a set of roles

each role is described by a sequence of events taken by the agents executing
the role

I agents may play in multiple roles

In the following, a basic model is presented.
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Terms

BasicTerm ::= Agent | Role | Fresh | Var | AdvConst | Fresh]TID | Var]TID

AdvConst : adversary generated constants

tid ∈ TID is the identifier of a thread.
The notation t]tid binds variables and freshly generated terms to threads: the term
t is local to the protocol role instance denoted by thread identifier tid .

Terms ::= BasicTerm | (Term,Term) | pk(Term) | sk(Term) | k(Term,Term) |
{|Term|}aTerm | {|Term|}sTerm | Func(Term?)

pk(X ) is the public key of X
sk(X ) is the secret key of X
k(X ,Y ) is the symmetric key belonging to X and Y .
Func is used for defining other cryptograhic functions.

Let t−1 be the inverse key of t . We have:
pk(X )−1 = sk(X ), sk(X )−1 = pk(X ) ∀X ∈ Agents, t−1 = t for all other terms t .
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Power of the adversary

Let ` a binary relation where M ` t means that t can be inferred from the set of
terms in M

` is the smallest relation statisfying:.

t ∈ M ⇒ M ` t
M ` t1 ∧M ` t2 ⇔ M ` (t1, t2)
M ` t1 ∧M ` t2 ⇒ M ` {|t1|}at2
M ` t1 ∧M ` t2 ⇒ M ` {|t1|}st2
M ` {|t1|}st2 ∧M ` t2 ⇒ M ` t1
M ` {|t1|}at2 ∧M ` (t2)−1 ⇒ M ` t1
∧0≤i≤nM ` ti ⇒ M ` f (t0, · · · , tn)

Subterms t of a term t ′, written t v t ′, are the syntactic subterms of t ′

for example, t1 v {|t1|}st2 and t2 v {|t1|}st2
FV (t) are the free variables of t :
FV (t) = {t ′ | t ′ v t ∧ t ′ ∈ Var ∪ {v]tid | v ∈ Var ∧ tid ∈ TID}}
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Events

The events are (concurrent execution of processes): starting a thread, sending a
message, receiving a message.

Event ::= create(Role,Lub) | send(Term) | recv(Term)

- Lub is a set of substitutions of terms for variables: [t0, · · · , tn/x0, · · · , xn] ∈ Lub

- send and receive do not include explicit sender or receiver (sender and receivers
can be subterms in the message sent/received)

- let σ be a substitution: σ(send(m)) = send(σ(m))

I The adversary receives all messages sent, independently of the
intended recipient.
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Protocols

I a protocol is a mappping from role names to event sequence

Protocol : Role 9 Events?

Consider two roles, Initiator and Recipient.
{Init ,Recp} ⊆ Role, key ∈ Fresh, x ∈ Var

Example of protocol

P(Init) = 〈send(Init ,Recp, {|{|Recp, key |}ask(Init)|}
a
pk(Recp))〉

P(Recp) = 〈recv(Init ,Recp, {|{|Recp, key |}ask(Init)|}
a
pk(Recp))〉
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Protocols

- protocols are executed by agents who executes roles
- role names are assigned agent names

Variables, fresh terms and roles of each thread are assigned unique names by
localize : TID → Lub

localize(tid) =
⋃

cv∈Var∪Fresh[cv]tid/cv ]

I thread gives the sequence of agent events that may occur in a thread.
The domain of substitution (Lub) is extended to roles

thread : (Events? × TID × Lub)→ Events?

Let l be a sequence of events, tid ∈ TID, and let σ be a substitution

thread(l , tid , σ) = σ(localize(tid)(l))
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Threads

Consider the protocol

P(Init) = 〈send(Init ,Recp, {|{|Recp, key |}ask(Init)|}
a
pk(Recp))〉

P(Recp) = 〈recv(Init ,Recp, {|{|Recp, x |}ask(Init)|}
a
pk(Recp))〉

Let t1 ∈ TID and {A,B} ⊆ Agent

Assume thread t1 performs the Init role. We have:

localize(t1)(key) = key]t1, and

thread(P(Init), t1, [A,B/Init ,Recp]) = 〈send(A,B, {|{|B, key]t1|}ask(A)|}
a
pk(B))〉

with [A,B/Init ,Recp] ∈ Lub the assignment to role names of agents
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Adversary knowledge

Initial knowledge
I The adversary knows all agents and the public key of the agents.
I The adversary can generate constants, using functions.

The set AdvConst is the set of fresh values the adversary can generate.
I If the adversary has compromised some agents, the adversary additionally

knows the private key of such agents.

For any agent a,
Keys(a) = {sk(a)} ∪

⋃
b∈Agent{k(a,b), k(b,a)}.

We divide agents into Honest agents and Compromised agents.

Adversary initial knowledge IK0:

IK0 = Agent ∪ AdvConst ∪
⋃

a∈agent{pk(a)} ∪
⋃

b∈Compromised{sk(b)}
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Model checking Cryptograhic protocols

Model checking cryptograhic protocols started with Lowe’s use of FDR model
checker to analyse the Needham-Schroeder public-key protocol, which
demonstrate a problem unnoticed for many years.

Book chapter: D. Basin, C. Cremers, C. Meadows. Model checking Security protocols.
E.M.Clark et al. (eds.), Handbook of Model Checking, Springer Int. Publishing, 2018.
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Execution model

The execution model is a transition system, with an associated notion of traces.

A trace is a possible execution history:
Trace = (TID × Event)?

A state is a tuple (tr , IK , th) where
- tr is a trace
- IK is the adversary knowledge
- th is a partial function mapping thread identifiers of executing or completed
threads to event traces. This is useful to define the functionality of threads.

State = Trace × P(Term)× (TID 9 Event?)

Initial system state: sinit = (〈〉, IK0, ∅)

86 / 98



Semantics
The semantics of a protocol P is a transition system generated by rules.
Each rule describe the execution of an event: create, send and receive.

Rule for createP

R ∈ dom(P) σ ∈ dom(P)→ Agent tid 6∈ dom(th)

(tr , IK , th)→ (tr · 〈(tid , create(R, σ)), IK , th[tid ` thread(P(R), tid , σ)])

Create a new instance of a protocol role R (thread)

Premises:
- σ associates the role names (dom(P)) with agents (Agent)
- tid is a fresh thread identifier (tid 6∈ dom(th))

Consequences:
- the successor trace is extended, reflecting that the thread tid executed the create
event and
- the thread mapping is extended with the thread assigned to tid
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Semantics

Rule for send

th(tid) = 〈send(m)〉 · l
(tr , IK , th)→ (tr · 〈(tid , send(m))〉, IK ∪ {m}, th[tid 7→ l])

send sends a message m to the network. The message is added to IK .

Premises:
- next event of thread tid is the send of m

Consequences:
- the successor trace is extended, reflecting the send event
- the adversary knowledge is updated with m
- thread for tid is updated

Note that IK includes all messages sent by agents.
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Semantics
Rule for recv

th(tid) = 〈recv(pt)〉 · l IK ` σ(pt) dom(σ) = FV (pt)
(tr , IK , th)→ (tr · 〈(tid , recv(σ(pt)))〉, IK , th[tid 7→ σ(l)])

Models an agent running a thread that receives a message from the network

Premises:
- the message must match the message pattern pt under a substitution σ (pt may
contain free variables)
- σ(pt) must be inferred from knowledge IK .

Consequences:
- recipients accept all messages that match the message pattern pt , and block on
any other messages.
- the resulting σ is applied to the remaining protocol steps l (in the rule:
th[tid 7→ σ(l)])

Note that recipients accept all messages that match the message pattern pt , any
other message is blocked.
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Transition relation

Definition (Transition relation)
Let P be a protocol. We define the transition relation→P as follows:

given s and s′, s →P s′ iff there exists a rule with the premises Q1(s), · · · ,Qn(s)
and the conclusions s → s′ such that all the premises hold.

Definition (Reachable states)
Given a set of states T :

PostP(T ) = {s′ ∈ States | ∃s ∈ T : s → s′}

Reachable(P) =
⋃

n=0,··· ,∞ Postn
P({sinit}.
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Needham-Schroeder Protocol

A,B ∈ Agent

P = Init → Recp : {| Init ,NInit |}apk(Recp)
Recp → Init : {| NInit ,NRecp |}apk(Init)
Init → Recp : {| NRecp |}apk(Recp)

thread(P(Init), t1, [A,B/Init ,Recp]) =
snd(A,B, {| A, key]t1 |}apk(B))

rcv(A,B, {| key]t1 , x]t1 |}apk(A))

snd(A,B, {| x]t1 |}apk(B))

thread(P(Recp), t2, [A,B/Init ,Recp]) =
rcv(A,B, {| A, x]t2)a

pk(B))

snd(A,B, {| x]t2 , key]t2 |}apk(A))

rcv(A,B, {| key]t2 |}apk(B))
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Needham-Schroeder Protocol: an execution

s = (tr , IK , th)
sinit = (〈〉, IK0, ∅), with IK0 = ∅

(〈〉, IK0, ∅)
↓create(t1)

(〈(t1, crt(A, [A,B/Init ,Recp]))〉, IK0, (t1 : snd ; rcv ; snd))
↓create(t2)

(〈...(t2, crt(B, [A,B/Init ,Recp]))〉, IK0, {t1 : snd ; rcv ; snd/t2 : rcv ; snd ; rcv}
↓snd(t1)

(〈...(t1, snd(...))〉, {{| A, key]t1 |}a
pk(B)}, {t1 : rcv ; snd/t2 : rcv ; snd ; rcv})
↓rcv(t2)

(〈...(t2, rcv(...))〉, {{| A, key]t1 |}a
pk(B)}, {t1 : rcv ; snd/t2 : snd : rcv [x]t2 = key]t1 ]})

↓snd(t2)

(〈...(t2, snd(...))〉, {{| A, key]t1 |}a
pk(B), {| key]t1 , key]t2 |}a

pk(A)}, {t1 : rcv ; snd/t2 : rcv [x]t2 = key]t1 ]})
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Needham-Schroeder Protocol

(〈...(t2, snd(...))〉, {{| A, key]t1 |}a
pk(B), {| key]t1 , key]t2 |}a

pk(A)}, {t1 : rcv ; snd/t2 : rcv [x]t2 = key]t1 ]})
↓rcv(t1)

(〈...〉, {{| A, key]t1 |}a
pk(B), {| key]t1 , key]t2 |}a

pk(A)}, {t1 : snd [x]t1 = key]t2 ]/t2 : rcv [x]t2 = key]t1 ]})
↓snd(t1)

(〈...〉, {{| A, key]t1 |}a
pk(B), {| key]t1 , key]t2 |}a

pk(A), {| key]t2 |}a
pk(B)}, {t1 : 〈〉/t2 : rcv − [x]t2 = key]t1 ]})

↓rcv(t2)

(〈...〉, {{| A, key]t1 |}a
pk(B), {| key]t1 , key]t2 |}a

pk(A), {| key]t2 |}a
pk(B)}, {t1 : 〈〉/t2 : 〈〉})
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Needham-Schroeder Protocol

thread(P(Init), t1, [A,B/Init ,Recp]) =
snd(A,B, {| A, key]t1 |}apk(B))

rcv(A,B, {| key]t1 , x]t1 |}apk(A))

snd(A,B, {| x]t1 |}apk(B))

thread(P(Recp), t2, [A,B/Init ,Recp]) =
rcv(A,B, {| A, x]t2)a

pk(B))

snd(A,B, {| x]t2 , key]t2 |}apk(A))

rcv(A,B, {| key]t2 |}apk(B))
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Lowe’s man-in-the-middle attack

Reconsider the Lowe’s attack to Needham-Schroeder public key protocol.

Step1. a→ i : {| a,Na |}apk(i)

Step2. i → b : {| a,Na |}apk(b)

Step3. b → a : {| Na,Nb |}apk(A)

Step4. a→ i : {| Nb |}apk(i)

Step5. i → b : {| Nb |}apk(b) (∗)

(∗): the intruder re-encrypts Nb under b public key and sends it to b.
b concludes that he shares Na and Nb with a and a only.
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Properties

Agents= {A,B, i}

We divide agents into Honest agents and Compromised agents.

Honest = {A,B} Compromised = {i}

IK0 = {pk(A),pk(B),pk(I), sk(i)}

thread(P(Init), t1, [A, i/Init ,Recp])

thread(P(Recp), t2, [A,B/Init ,Recp])

the compromised agent may have the role Init or Recp with agent A or agent B
and use the IK to generate terms and to infer new terms.
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Properties

Definition (Secrecy)
Let t ∈ Fresh. We say that a state s = (tr , IK , th) satisfies secrecy of t if and only if

∀tid , if tid is a Honest thread, then ¬(IK ` (t]tid))

A protocol P ensures secrecy of t if an only if all reachable states of P satisfy
secrecy of t .

The Needham-Schroeder public key protocol does not ensure the secrecy of the
nouces.
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Model checking algorithms

The simplicity of the Dolev-Yao adversary has made it popular.

For many real-world scenarios, an adversary who has complete control of the
network may can unrealistic.

Main issues in developing model checkers for cryptographic protocols:
- forward and backward search
- state representations
- bounding the state space

Specialized techniques have been developed.

Some tools: NRL Protocol Analyzer (NPA), Maude-NPA, AVISPA, ProVerif tool,
......
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